37、单向量子计算:原理、实例与超越传统电路的模拟

单向量子计算:原理、实例与超越传统电路的模拟

1. 引言

量子计算的电路模型在量子计算的发展中是一个强大的工具,它既为理论研究提供了框架,也为实验提供了指导。在电路模型中,幺正操作由基本量子门(如 CNOT 门和单量子比特旋转)组成的网络表示。许多量子计算的实现方案都是围绕这个模型设计的。

然而,以不同的方式表述量子计算,可以获得新的实验框架和理论见解。单向量子计算就实现了这两点。在许多量子信息协议中,对纠缠态的测量起着关键作用,例如量子隐形传态和基于纠缠的量子密钥分发。在这些应用中,需要事先生成一个纠缠态,然后在协议执行期间进行测量,将量子关联转化为例如密钥。为了重复协议,必须制备一个新的纠缠态。从这个意义上说,纠缠态或由该态体现的量子关联可以被视为一种在协议中被“耗尽”的资源。

在单向量子计算中,利用一种称为簇态或图态的纠缠态中的量子关联,仅通过单量子比特测量就可以实现通用量子计算。量子算法由这些测量的基选择和资源态的“纠缠结构”指定。“单向”这个名称反映了图态的资源性质。该态只能使用一次,并且(不可逆的)投影测量推动计算向前进行,这与标准网络模型中每个门的可逆性形成对比。

2. 簇态和图态

簇态和图态可以通过以下方式构造性地定义。对于每个态,我们关联一个图,即一组顶点和连接顶点对的边。图上的每个顶点对应一个量子比特。相应的“图态”可以通过将每个量子比特制备在态 $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ 并对图中由边连接的每对量子比特应用受控 $\sigma_z$(CZ)操作 $|0\rangle\langle0| \otimes \mathbb{1} + |1\

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值