基于计算机视觉的道路裂缝检测识别系统——Matlab实现

417 篇文章 ¥59.90 ¥99.00
本文介绍了一种基于计算机视觉,使用Matlab实现的道路裂缝检测识别系统,包括图像预处理、裂缝检测、特征提取和SVM分类识别四个模块,旨在提升公路养护效率和安全性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于计算机视觉的道路裂缝检测识别系统——Matlab实现

道路裂缝是公路养护中不可避免的问题,能够及时发现并处理道路裂缝对保证公路交通的安全和畅通起到至关重要的作用。因此,设计一套高效、准确的道路裂缝检测识别系统具有重要意义。

本文基于计算机视觉技术,提出一种利用Matlab实现的道路裂缝检测识别系统。该系统主要分为图像预处理、道路裂缝检测、道路裂缝特征提取和分类识别等几个模块。下面将详细介绍各个模块的实现方法。

一、图像预处理

图像预处理一般是为了去除图像中噪声,从而提高其质量和清晰度。在本系统中,我们采用了高斯滤波器对图像进行平滑处理,以消除噪声干扰。Matlab提供了imgaussfilt函数可以实现高斯滤波器的应用,代码如下:

I = imread('image.jpg');
J = imgaussfilt(I,2);

其中image.jpg为输入图像,2为高斯滤波器的标准差,代表平滑程度。

二、道路裂缝检测

道路裂缝检测是本系统的核心,在该模块中我们采用了基于Canny边缘检测算法的方法。Canny算法主要通过检测图像中变化剧烈的区域,确定出道路裂缝所在的位置。以下是实现代码:

I = imread('image.jpg');
I = rgb2gray(I);
J = edge(I, 'canny')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值