机器学习算法检测DDoS攻击与移动网络查询安全研究
1. 机器学习算法检测DDoS攻击
在检测DDoS攻击时,研究人员采用了多种机器学习算法,并使用CAIDA数据集作为攻击数据,SSE网络收集的正常流量作为正常数据,通过开源工具KNIME进行分类。
1.1 算法原理
- k - NN算法 :对于测试元素dt,该算法在训练集中找到其k个最近邻元素,这些元素构成dt的邻域,然后通过多数投票来决定dt的类别。
- FCM聚类(模糊c - 均值聚类) :这是一种允许一个数据点属于两个或多个聚类的聚类方法。它基于最小化以下目标函数:
[J=\sum_{i = 1}^{n}\sum_{j = 1}^{c}u_{ij}^{m}\left | x_{i}-c_{j} \right |^{2}]
其中m是大于1的实数,$u_{ij}$是$x_{i}$在聚类j中的隶属度,$x_{i}$是d维测量数据中的第i个数据,$c_{j}$是d维聚类中心,$\left | * \right |$是表示任何测量数据与中心之间相似度的范数。
1.2 实验结果
| 数据类型 | 数据包总数 |
|---|---|
| 攻击 (CAIDA) | 945372 |
| 正常 | 110535 |
超级会员免费看
订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



