56、机器学习算法检测DDoS攻击与移动网络查询安全研究

机器学习算法检测DDoS攻击与移动网络查询安全研究

1. 机器学习算法检测DDoS攻击

在检测DDoS攻击时,研究人员采用了多种机器学习算法,并使用CAIDA数据集作为攻击数据,SSE网络收集的正常流量作为正常数据,通过开源工具KNIME进行分类。

1.1 算法原理
  • k - NN算法 :对于测试元素dt,该算法在训练集中找到其k个最近邻元素,这些元素构成dt的邻域,然后通过多数投票来决定dt的类别。
  • FCM聚类(模糊c - 均值聚类) :这是一种允许一个数据点属于两个或多个聚类的聚类方法。它基于最小化以下目标函数:
    [J=\sum_{i = 1}^{n}\sum_{j = 1}^{c}u_{ij}^{m}\left | x_{i}-c_{j} \right |^{2}]
    其中m是大于1的实数,$u_{ij}$是$x_{i}$在聚类j中的隶属度,$x_{i}$是d维测量数据中的第i个数据,$c_{j}$是d维聚类中心,$\left | * \right |$是表示任何测量数据与中心之间相似度的范数。
1.2 实验结果
数据类型 数据包总数
攻击 (CAIDA) 945372
正常 110535
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值