Integrating VideoMAE based model and Optical Flow for Micro- and Macro-expression Spotting 阅读笔记

本文提出结合VideoMAE预训练模型和光学流技术,提升长视频中宏表情和微表情识别的鲁棒性,通过自监督学习、区间融合及后处理策略优化检测性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ACM上的会议文章,中科院自动化所的工作,用于做宏表情与微表情的检测
摘要:
In this paper, we propose a pre-trained model combined with the optical flow method to improve the accuracy and robustness of macro- and micro-expression spotting.
本文提出了一种结合预训练模型和光流方法来提高宏表情和微表情检测的准确性和鲁棒性。
1.简介
In general, tasks related to micro-expression include two main aspects: micro-expression spotting in a long video and emotion recognition in micro-expression clips
一般而言,与微表情相关的任务主要包括两个方面:长视频中的微表情识别和微表情片段中的情绪识别
At the same time, in a long video, there will inevitably be blinking and shaking of the head and other factors to interfere with, which makes micro-expression spotting task challenging.
同时,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

pzb19841116

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值