以下是 Transformer架构问题集 ,严格按技术模块分层,数学推导深度与代码关联性完整保留:
一、注意力机制(30问)
1. 基础组件(12问)
-
Q1 推导标准点积注意力公式
的梯度计算
-
Q2 证明缩放因子
对梯度方差稳定性的作用(假设
)
-
Q3 多头注意力的并行计算复杂度分析(FLOPs公式推导)
-
Q4 证明多头注意力输出矩阵的线性变换(Concat +
)
-
Q5 头数 ℎh 与嵌入维度
的参数量关系
-
Q6 推导注意力掩码(Mask)对softmax输出的概率归一化影响
-
Q7 分析因果注意力(Causal Attention)的位置依赖性数学表达
-
Q8 推导键值缓存(KV Cache)对自回归生成的内存复杂度公式
-
Q9 证明交叉注意力(Cross-Attention)的查询-键值分离梯度路径
-
Q10 分析多头注意力的参数共享(如键/值投影共享)对模型容量的影响
-
Q11 推导注意力权重对模型解释性的贡献度(基于Integrated Gradients)
-
Q12 分析注意力头之间的正交性约束对模型性能的影响
2. 稀疏/高效注意力(10问)
-
Q13 局部窗口注意力的内存占用公式推导(窗口大小
)
-
Q14 LSH注意力中哈希桶分配的期望误差分析
-
Q15 块稀疏注意力(Block Sparse)的信息传递延迟建模
-
Q16 轴向注意力(Axial Attention)的维度分解数学证明
-
Q17 推导线性注意力(Linear Attention)的核函数近似误差上界
-
Q18 分析内存压缩注意力(Memory-Compressed Attention)的池化操作梯度
-
Q19 证明低秩注意力(Low-Rank Attention)的秩约束优化条件
-
Q20 计算动态稀疏注意力(Dynamic Sparse Attention)的Top-k选择阈值
-
Q21 推导分块循环注意力(Block-Recurrent Attention)的长期依赖建模能力
-
Q22 分析稀疏化训练中Straight-Through Estimator的梯度近似误差
3. 跨模态与多模态(8问)
-
Q23 跨模态注意力中图像-文本对齐损失(Contrastive Loss)的梯度对称性证明
-
Q24 文档级跨注意力(Longformer)的滑动窗口复杂度
推导
-
Q25 分析视觉-语言模型中区域注意力(Region Attention)的边界框投影公式
-
Q26 推导多语言Transformer中语言间注意力共享的参数效率公式
-
Q27 证明时序注意力(Temporal Attention)在视频模型中的帧间依赖建模
-
Q28 分析图注意力(Graph Attention)的邻接矩阵与注意力权重的等价条件
-
Q29 推导语音识别中流式注意力(Streaming Attention)的延迟约束优化
-
Q30 验证多模态融合注意力(Fusion Attention)的模态间信息瓶颈公式
二、位置编码(20问)
1. 绝对位置编码(7问)
-
Q31 正弦位置编码
的平移不变性证明
-
Q32 可学习位置编码的梯度更新公式推导
-
Q33 分析正弦编码的频率衰减对长程依赖建模的影响
-
Q34 推导位置插值(Position Interpolation)在长文本外推中的误差上界
-
Q35 证明随机位置编码(Randomized PE)的抗过拟合概率边界
-
Q36 分析复数位置编码(Complex PE)的相位保持性质
-
Q37 推导层次化位置编码(Hierarchical PE)的多尺度依赖建模公式
2. 相对位置编码(8问)
-
Q38 旋转位置编码(RoPE)的复数形式
对注意力分数的几何影响分析
-
Q39 T5相对位置偏置
的对称性条件推导
-
Q40 ALiBi位置偏置的线性衰减系数数学优化
-
Q41 推导相对位置编码中键-查询偏移量的梯度传播路径
-
Q42 分析XPos(旋转缩放位置编码)对注意力分数的动态调整作用
-
Q43 证明相对位置编码在因果掩码下的对称性破坏现象
-
Q44 推导相对位置编码的增量更新公式(用于流式推理)
-
Q45 分析位置编码与词嵌入的耦合效应对模型容量的影响
3. 动态/自适应编码(5问)
-
Q46 推导动态位置编码(Dynamic PE)的LSTM更新门控制公式
-
Q47 分析自适应位置编码(Adaptive PE)的长度外推鲁棒性
-
Q48 证明位置编码与注意力机制的联合优化必要性(通过耦合梯度分析)
-
Q49 推导可学习位置插值(Learned Interpolation)的权重分配公式
-
Q50 分析位置编码在低资源语言中的迁移学习稳定性
三、残差与归一化(18问)
1. 残差连接(10问)
-
Q51 残差连接 x+Sublayer(x) 的梯度幅度下界证明(假设 Sublayer 初始化为零)
-
Q52 深层Transformer中残差连接对梯度消失的缓解分析(链式法则展开)
-
Q53 推导残差权重(如DeepNorm)的初始化约束条件
-
Q54 分析残差连接对模型鲁棒性的影响(基于梯度噪声注入实验)
-
Q55 证明跨层残差跳跃(Cross-Layer Skip Connections)的信息融合效率
-
Q56 推导动态残差门控(Dynamic Residual Gating)的权重更新公式
-
Q57 分析残差连接与模型深度的最优比例关系(通过信号传播理论)
-
Q58 验证残差连接在对抗训练中的梯度稳定性
-
Q59 推导多头残差(Multi-Head Residual)的参数分配公式
-
Q60 分析残差连接对模型剪枝的敏感性(基于Hessian矩阵谱分析)
2. 归一化技术(8问)
-
Q61 LayerNorm归一化公式
的梯度推导
-
Q62 LayerNorm与BatchNorm在序列数据中的统计量差异对比
-
Q63 RMSNorm(均方根归一化)的梯度稳定性证明
-
Q64 分析自适应归一化(Adaptive Norm)的规模恢复能力
-
Q65 推导前置归一化(Pre-LN)与后置归一化(Post-LN)的训练动态差异
-
Q66 证明幂归一化(PowerNorm)对异常值的鲁棒性
-
Q67 分析动态归一化(Dynamic Normalization)的滑动平均更新公式
-
Q68 推导混合归一化(Hybrid Norm)的模态适配权重分配
四、前馈网络(15问)
1. 全连接层(8问)
-
Q69 FFN参数量公式推导
-
Q70 GeLU激活函数
的近似误差分析(
为CDF)
-
Q71 推导SwiGLU激活函数
的梯度特性
-
Q72 分析FFN隐层维度
与模型容量的关系(通过VC维理论)
-
Q73 证明FFN的万能近似定理(Universal Approximation Theorem)
-
Q74 推导动态FFN(Dynamic FFN)的门控权重更新公式
-
Q75 分析FFN中的参数共享(如跨层共享)对模型性能的影响
-
Q76 验证FFN的稀疏化训练中Lottery Ticket Hypothesis的适用性
2. 参数高效设计(7问)
-
Q77 LoRA低秩适配器的参数更新公式
的秩约束证明
-
Q78 适配器(Adapter)层的低秩分解效率分析
-
Q79 推导前缀调优(Prefix Tuning)的软提示梯度传播路径
-
Q80 分析稀疏FFN(Sparse FFN)的激活模式与任务相关性
-
Q81 证明FFN的量化误差对下游任务的影响(基于扰动分析)
-
Q82 推导FFN的权重剪枝(Weight Pruning)敏感度排序公式
-
Q83 分析FFN与注意力层的参数分配最优比例(通过帕累托前沿)
五、解码策略(12问)
1. 自回归生成(6问)
-
Q84 贪心搜索(Greedy Search)的Token选择概率公式
推导
-
Q85 束搜索(Beam Search)的序列对数似然累积方差分析
-
Q86 推导重复惩罚(Repetition Penalty)对概率分布的修正公式
-
Q87 分析长度归一化(Length Normalization)对束搜索排名的影响
-
Q88 验证自回归生成中的暴露偏差(Exposure Bias)数学表达
-
Q89 推导非自回归生成(NAR)的并行解码损失函数
2. 采样与可控性(6问)
-
Q90 Top-p采样(Nucleus Sampling)的集合
基数期望计算
-
Q91 温度缩放(Temperature Scaling)对概率分布熵的影响证明
-
Q92 分析典型采样(Typical Sampling)的信息量约束条件
-
Q93 推导基于能量的采样(Energy-Based Sampling)的马尔可夫链收敛性
-
Q94 验证解码指导(Decoding Guidance)中约束满足的概率边界
-
Q95 分析多假设生成(Multiple Hypotheses Generation)的多样性度量公式
六、架构变体(25问)
1. 稀疏/混合专家(8问)
-
Q96 MoE门控权重
的梯度稀疏性证明
-
Q97 Switch Transformer的专家负载均衡损失公式推导
-
Q98 分析专家并行(Expert Parallelism)的通信开销模型
-
Q99 推导稀疏门控(Sparse Gating)的Top-k选择梯度近似
-
Q100 验证MoE模型中的负载不均衡与模型性能的关系
-
Q101 分析动态专家分配(Dynamic Expert Allocation)的在线学习公式
-
Q102 证明MoE在跨语言迁移中的参数效率优势
-
Q103 推导专家噪声(Expert Noise)对模型鲁棒性的影响
2. 跨模态扩展(7问)
-
Q104 视觉Transformer中Patch Embedding的参数量计算(图像尺寸 H×W,Patch大小 P)
-
Q105 多模态Transformer的跨注意力对齐损失(Contrastive Loss)梯度对称性分析
-
Q106 推导音频Transformer的频谱图位置编码公式
-
Q107 分析视频Transformer中时空位置编码的分离有效性
-
Q108 验证多模态融合层的模态丢弃(Modality Dropout)正则化效果
-
Q109 推导点云Transformer中局部几何注意力(Local Geometric Attention)的曲率约束
-
Q110 分析化学分子Transformer的图结构位置编码(Graph PE)
3. 高效架构(10问)
-
Q111 推导线性Transformer的核函数近似误差传播公式
-
Q112 分析Performer的随机正交投影(FAVOR+机制)的方差稳定性
-
Q113 证明记忆压缩Transformer的池化操作信息损失上界
-
Q114 推导蒸馏小型Transformer的知识传递损失函数
-
Q115 分析动态架构Transformer的控制器梯度优化
-
Q116 验证轻量级Transformer(Lite Transformer)的参数量-准确率权衡
-
Q117 推导二进制Transformer的量化训练梯度修正公式
-
Q118 分析递归Transformer(Recurrent Transformer)的长期记忆保持能力
-
Q119 证明联邦学习Transformer的参数聚合收敛条件
-
Q120 推导Transformer在边缘设备上的延迟-精度优化公式
七、训练与优化(30问)
1. 损失函数(8问)
-
Q121 推导交叉熵损失与极大似然估计的等价性证明
-
Q122 分析Focal Loss对难样本梯度权重的调整公式
-
Q123 验证标签平滑(Label Smoothing)对模型校准误差的影响
-
Q124 推导对比学习(Contrastive Loss)的梯度聚焦特性
-
Q125 分析蒸馏损失(Distillation Loss)的温度参数
优化
-
Q126 证明对抗训练损失(Adversarial Loss)的Lipschitz连续性约束
-
Q127 推导多任务学习的帕累托优化(Pareto Optimization)公式
-
Q128 分析稀疏训练损失(Sparse Training Loss)的隐式正则化效果
2. 优化器(7问)
-
Q129 证明Adam优化器中偏差修正(Bias Correction)项的数学必要性
-
Q130 推导LAMB优化器的层自适应学习率调整公式
-
Q131 分析Adafactor优化器的参数分解(Factorization)内存优势
-
Q132 验证Sophia优化器的曲率感知更新规则
-
Q133 推导分布式训练中梯度累积(Gradient Accumulation)的等效性
-
Q134 分析混合精度训练(FP16/FP32)的梯度缩放稳定性条件
-
Q135 证明二阶优化器(Shampoo)的逆矩阵近似误差传播
3. 正则化与初始化(7问)
-
Q136 推导Dropout的期望方差补偿公式
-
Q137 分析权重衰减(Weight Decay)与L2正则化的等价性条件
-
Q138 证明Xavier初始化的方差平衡性质
-
Q139 推导残差连接的零初始化(Zero Initialization)稳定性条件
-
Q140 分析梯度裁剪(Gradient Clipping)对训练动态的影响
-
Q141 验证Layer-wise自适应速率缩放(LARS)的有效性
-
Q142 推导稀疏初始化的模型容量分析
4. 分布式训练(8问)
-
Q143 推导数据并行的梯度AllReduce通信复杂度
-
Q144 分析模型并行的流水线气泡(Pipeline Bubble)时间占比
-
Q145 证明张量并行(Tensor Parallelism)的参数划分最优性
-
Q146 推导混合并行的资源分配优化公式
-
Q147 分析ZeRO优化器的内存节省量化模型
-
Q148 验证异步训练(Async Training)的收敛条件
-
Q149 推导弹性训练(Elastic Training)的动态缩放策略
-
Q150 分析联邦学习中的差分隐私(DP)噪声注入量
八、前沿扩展(50问)
(因篇幅限制,此处列出部分问题,完整列表可分段展开)
-
Q151 神经符号Transformer的逻辑规则嵌入梯度推导
-
Q152 扩散Transformer的去噪过程与注意力权重关联
-
Q153 脉冲神经网络(SNN)与Transformer的时间编码等价性证明
-
Q154 RLHF中PPO目标函数的梯度推导
-
Q155 图注意力网络(GAT)与Transformer的数学等价性条件
-
Q156 时空位置编码的联合傅里叶基融合公式推导
-
Q157 可微分逻辑门在注意力门控中的梯度近似
-
Q158 因果发现中注意力权重对干预效应的传播公式
-
Q159 Hamiltonian Transformer的能量守恒约束证明
-
Q200 量子注意力(Quantum Attention)的振幅编码与Softmax对应关系
设计说明
-
全面性:覆盖基础组件(注意力、位置编码)、核心机制(残差、归一化)、训练技术(优化器、正则化)、架构变体(MoE、跨模态)及前沿扩展(神经符号、量子化)。
-
一致性:每个子类问题数量与实际描述严格对应(如注意力机制30问、训练与优化30问)。
-
数学深度:每个问题需通过严格推导/证明完成,例如:
-
Q2 使用方差公式
证明缩放必要性。
-
Q38 通过复数乘法
推导旋转不变性。
-
-
代码关联:关键公式与PyTorch实现对应,例如:
# Q1对应代码:点积注意力梯度计算 Q = torch.randn(batch, seq_len, d_k, requires_grad=True) K = torch.randn(batch, seq_len, d_k, requires_grad=True) scores = torch.matmul(Q, K.transpose(-2, -1)) / (d_k ** 0.5) loss = scores.sum() loss.backward() # 计算梯度