LLM数学推导——Transformer架构问题集

以下是 Transformer架构问题集 ,严格按技术模块分层,数学推导深度与代码关联性完整保留:

一、注意力机制(30问)

1. 基础组件(12问)
  1. Q1 推导标准点积注意力公式 Softmax(QK^T / \sqrt{d_k})V 的梯度计算

  2. Q2 证明缩放因子 \sqrt{d_k}​​ 对梯度方差稳定性的作用(假设 Q, K \sim N(0, 1)

  3. Q3 多头注意力的并行计算复杂度分析(FLOPs公式推导)

  4. Q4 证明多头注意力输出矩阵的线性变换(Concat + W^O

  5. Q5 头数 ℎh 与嵌入维度 d_{model} 的参数量关系

  6. Q6 推导注意力掩码(Mask)对softmax输出的概率归一化影响

  7. Q7 分析因果注意力(Causal Attention)的位置依赖性数学表达

  8. Q8 推导键值缓存(KV Cache)对自回归生成的内存复杂度公式

  9. Q9 证明交叉注意力(Cross-Attention)的查询-键值分离梯度路径

  10. Q10 分析多头注意力的参数共享(如键/值投影共享)对模型容量的影响

  11. Q11 推导注意力权重对模型解释性的贡献度(基于Integrated Gradients)

  12. Q12 分析注意力头之间的正交性约束对模型性能的影响

2. 稀疏/高效注意力(10问)
  1. Q13 局部窗口注意力的内存占用公式推导(窗口大小 \omega

  2. Q14 LSH注意力中哈希桶分配的期望误差分析

  3. Q15 块稀疏注意力(Block Sparse)的信息传递延迟建模

  4. Q16 轴向注意力(Axial Attention)的维度分解数学证明

  5. Q17 推导线性注意力(Linear Attention)的核函数近似误差上界

  6. Q18 分析内存压缩注意力(Memory-Compressed Attention)的池化操作梯度

  7. Q19 证明低秩注意力(Low-Rank Attention)的秩约束优化条件

  8. Q20 计算动态稀疏注意力(Dynamic Sparse Attention)的Top-k选择阈值

  9. Q21 推导分块循环注意力(Block-Recurrent Attention)的长期依赖建模能力

  10. Q22 分析稀疏化训练中Straight-Through Estimator的梯度近似误差

3. 跨模态与多模态(8问)
  1. Q23 跨模态注意力中图像-文本对齐损失(Contrastive Loss)的梯度对称性证明

  2. Q24 文档级跨注意力(Longformer)的滑动窗口复杂度 O(n\times × w) 推导

  3. Q25 分析视觉-语言模型中区域注意力(Region Attention)的边界框投影公式

  4. Q26 推导多语言Transformer中语言间注意力共享的参数效率公式

  5. Q27 证明时序注意力(Temporal Attention)在视频模型中的帧间依赖建模

  6. Q28 分析图注意力(Graph Attention)的邻接矩阵与注意力权重的等价条件

  7. Q29 推导语音识别中流式注意力(Streaming Attention)的延迟约束优化

  8. Q30 验证多模态融合注意力(Fusion Attention)的模态间信息瓶颈公式

二、位置编码(20问)

1. 绝对位置编码(7问)
  1. Q31 正弦位置编码 PE(pos, 2i) = sin(pos / 10000^{2i/d}) 的平移不变性证明

  2. Q32 可学习位置编码的梯度更新公式推导

  3. Q33 分析正弦编码的频率衰减对长程依赖建模的影响

  4. Q34 推导位置插值(Position Interpolation)在长文本外推中的误差上界

  5. Q35 证明随机位置编码(Randomized PE)的抗过拟合概率边界

  6. Q36 分析复数位置编码(Complex PE)的相位保持性质

  7. Q37 推导层次化位置编码(Hierarchical PE)的多尺度依赖建模公式

2. 相对位置编码(8问)
  1. Q38 旋转位置编码(RoPE)的复数形式 qe^{im\theta }对注意力分数的几何影响分析

  2. Q39 T5相对位置偏置 b_{i,j}​ 的对称性条件推导

  3. Q40 ALiBi位置偏置的线性衰减系数数学优化

  4. Q41 推导相对位置编码中键-查询偏移量的梯度传播路径

  5. Q42 分析XPos(旋转缩放位置编码)对注意力分数的动态调整作用

  6. Q43 证明相对位置编码在因果掩码下的对称性破坏现象

  7. Q44 推导相对位置编码的增量更新公式(用于流式推理)

  8. Q45 分析位置编码与词嵌入的耦合效应对模型容量的影响

3. 动态/自适应编码(5问)
  1. Q46 推导动态位置编码(Dynamic PE)的LSTM更新门控制公式

  2. Q47 分析自适应位置编码(Adaptive PE)的长度外推鲁棒性

  3. Q48 证明位置编码与注意力机制的联合优化必要性(通过耦合梯度分析)

  4. Q49 推导可学习位置插值(Learned Interpolation)的权重分配公式

  5. Q50 分析位置编码在低资源语言中的迁移学习稳定性

三、残差与归一化(18问)

1. 残差连接(10问)
  1. Q51 残差连接 x+Sublayer(x) 的梯度幅度下界证明(假设 Sublayer 初始化为零)

  2. Q52 深层Transformer中残差连接对梯度消失的缓解分析(链式法则展开)

  3. Q53 推导残差权重(如DeepNorm)的初始化约束条件

  4. Q54 分析残差连接对模型鲁棒性的影响(基于梯度噪声注入实验)

  5. Q55 证明跨层残差跳跃(Cross-Layer Skip Connections)的信息融合效率

  6. Q56 推导动态残差门控(Dynamic Residual Gating)的权重更新公式

  7. Q57 分析残差连接与模型深度的最优比例关系(通过信号传播理论)

  8. Q58 验证残差连接在对抗训练中的梯度稳定性

  9. Q59 推导多头残差(Multi-Head Residual)的参数分配公式

  10. Q60 分析残差连接对模型剪枝的敏感性(基于Hessian矩阵谱分析)

2. 归一化技术(8问)
  1. Q61 LayerNorm归一化公式 \frac{x-\mu }{\sigma } \bigodot \gamma +\beta 的梯度推导

  2. Q62 LayerNorm与BatchNorm在序列数据中的统计量差异对比

  3. Q63 RMSNorm(均方根归一化)的梯度稳定性证明

  4. Q64 分析自适应归一化(Adaptive Norm)的规模恢复能力

  5. Q65 推导前置归一化(Pre-LN)与后置归一化(Post-LN)的训练动态差异

  6. Q66 证明幂归一化(PowerNorm)对异常值的鲁棒性

  7. Q67 分析动态归一化(Dynamic Normalization)的滑动平均更新公式

  8. Q68 推导混合归一化(Hybrid Norm)的模态适配权重分配

四、前馈网络(15问)

1. 全连接层(8问)
  1. Q69 FFN参数量公式推导(GeLU(xW_1))W_2)

  2. Q70 GeLU激活函数 x\Phi (x) 的近似误差分析(\Phi 为CDF)

  3. Q71 推导SwiGLU激活函数 xW \bigodot Sigmoid (xV) 的梯度特性

  4. Q72 分析FFN隐层维度 d_{ff} 与模型容量的关系(通过VC维理论)

  5. Q73 证明FFN的万能近似定理(Universal Approximation Theorem)

  6. Q74 推导动态FFN(Dynamic FFN)的门控权重更新公式

  7. Q75 分析FFN中的参数共享(如跨层共享)对模型性能的影响

  8. Q76 验证FFN的稀疏化训练中Lottery Ticket Hypothesis的适用性

2. 参数高效设计(7问)
  1. Q77 LoRA低秩适配器的参数更新公式 \bigtriangleup W = BA 的秩约束证明

  2. Q78 适配器(Adapter)层的低秩分解效率分析

  3. Q79 推导前缀调优(Prefix Tuning)的软提示梯度传播路径

  4. Q80 分析稀疏FFN(Sparse FFN)的激活模式与任务相关性

  5. Q81 证明FFN的量化误差对下游任务的影响(基于扰动分析)

  6. Q82 推导FFN的权重剪枝(Weight Pruning)敏感度排序公式

  7. Q83 分析FFN与注意力层的参数分配最优比例(通过帕累托前沿)

五、解码策略(12问)

1. 自回归生成(6问)
  1. Q84 贪心搜索(Greedy Search)的Token选择概率公式 argmaxP(y_t\mid_{y < t}) )推导

  2. Q85 束搜索(Beam Search)的序列对数似然累积方差分析

  3. Q86 推导重复惩罚(Repetition Penalty)对概率分布的修正公式

  4. Q87 分析长度归一化(Length Normalization)对束搜索排名的影响

  5. Q88 验证自回归生成中的暴露偏差(Exposure Bias)数学表达

  6. Q89 推导非自回归生成(NAR)的并行解码损失函数

2. 采样与可控性(6问)
  1. Q90 Top-p采样(Nucleus Sampling)的集合 V^{(p)}基数期望计算

  2. Q91 温度缩放(Temperature Scaling)对概率分布熵的影响证明

  3. Q92 分析典型采样(Typical Sampling)的信息量约束条件

  4. Q93 推导基于能量的采样(Energy-Based Sampling)的马尔可夫链收敛性

  5. Q94 验证解码指导(Decoding Guidance)中约束满足的概率边界

  6. Q95 分析多假设生成(Multiple Hypotheses Generation)的多样性度量公式

六、架构变体(25问)

1. 稀疏/混合专家(8问)
  1. Q96 MoE门控权重 G(x)=softmax(xW_g)的梯度稀疏性证明

  2. Q97 Switch Transformer的专家负载均衡损失公式推导

  3. Q98 分析专家并行(Expert Parallelism)的通信开销模型

  4. Q99 推导稀疏门控(Sparse Gating)的Top-k选择梯度近似

  5. Q100 验证MoE模型中的负载不均衡与模型性能的关系

  6. Q101 分析动态专家分配(Dynamic Expert Allocation)的在线学习公式

  7. Q102 证明MoE在跨语言迁移中的参数效率优势

  8. Q103 推导专家噪声(Expert Noise)对模型鲁棒性的影响

2. 跨模态扩展(7问)
  1. Q104 视觉Transformer中Patch Embedding的参数量计算(图像尺寸 H×W,Patch大小 P)

  2. Q105 多模态Transformer的跨注意力对齐损失(Contrastive Loss)梯度对称性分析

  3. Q106 推导音频Transformer的频谱图位置编码公式

  4. Q107 分析视频Transformer中时空位置编码的分离有效性

  5. Q108 验证多模态融合层的模态丢弃(Modality Dropout)正则化效果

  6. Q109 推导点云Transformer中局部几何注意力(Local Geometric Attention)的曲率约束

  7. Q110 分析化学分子Transformer的图结构位置编码(Graph PE)

3. 高效架构(10问)
  1. Q111 推导线性Transformer的核函数近似误差传播公式

  2. Q112 分析Performer的随机正交投影(FAVOR+机制)的方差稳定性

  3. Q113 证明记忆压缩Transformer的池化操作信息损失上界

  4. Q114 推导蒸馏小型Transformer的知识传递损失函数

  5. Q115 分析动态架构Transformer的控制器梯度优化

  6. Q116 验证轻量级Transformer(Lite Transformer)的参数量-准确率权衡

  7. Q117 推导二进制Transformer的量化训练梯度修正公式

  8. Q118 分析递归Transformer(Recurrent Transformer)的长期记忆保持能力

  9. Q119 证明联邦学习Transformer的参数聚合收敛条件

  10. Q120 推导Transformer在边缘设备上的延迟-精度优化公式

七、训练与优化(30问)

1. 损失函数(8问)
  1. Q121 推导交叉熵损失与极大似然估计的等价性证明

  2. Q122 分析Focal Loss对难样本梯度权重的调整公式

  3. Q123 验证标签平滑(Label Smoothing)对模型校准误差的影响

  4. Q124 推导对比学习(Contrastive Loss)的梯度聚焦特性

  5. Q125 分析蒸馏损失(Distillation Loss)的温度参数 \tau 优化

  6. Q126 证明对抗训练损失(Adversarial Loss)的Lipschitz连续性约束

  7. Q127 推导多任务学习的帕累托优化(Pareto Optimization)公式

  8. Q128 分析稀疏训练损失(Sparse Training Loss)的隐式正则化效果

2. 优化器(7问)
  1. Q129 证明Adam优化器中偏差修正(Bias Correction)项的数学必要性

  2. Q130 推导LAMB优化器的层自适应学习率调整公式

  3. Q131 分析Adafactor优化器的参数分解(Factorization)内存优势

  4. Q132 验证Sophia优化器的曲率感知更新规则

  5. Q133 推导分布式训练中梯度累积(Gradient Accumulation)的等效性

  6. Q134 分析混合精度训练(FP16/FP32)的梯度缩放稳定性条件

  7. Q135 证明二阶优化器(Shampoo)的逆矩阵近似误差传播

3. 正则化与初始化(7问)
  1. Q136 推导Dropout的期望方差补偿公式

  2. Q137 分析权重衰减(Weight Decay)与L2正则化的等价性条件

  3. Q138 证明Xavier初始化的方差平衡性质

  4. Q139 推导残差连接的零初始化(Zero Initialization)稳定性条件

  5. Q140 分析梯度裁剪(Gradient Clipping)对训练动态的影响

  6. Q141 验证Layer-wise自适应速率缩放(LARS)的有效性

  7. Q142 推导稀疏初始化的模型容量分析

4. 分布式训练(8问)
  1. Q143 推导数据并行的梯度AllReduce通信复杂度

  2. Q144 分析模型并行的流水线气泡(Pipeline Bubble)时间占比

  3. Q145 证明张量并行(Tensor Parallelism)的参数划分最优性

  4. Q146 推导混合并行的资源分配优化公式

  5. Q147 分析ZeRO优化器的内存节省量化模型

  6. Q148 验证异步训练(Async Training)的收敛条件

  7. Q149 推导弹性训练(Elastic Training)的动态缩放策略

  8. Q150 分析联邦学习中的差分隐私(DP)噪声注入量

八、前沿扩展(50问)

(因篇幅限制,此处列出部分问题,完整列表可分段展开)

  • Q151 神经符号Transformer的逻辑规则嵌入梯度推导

  • Q152 扩散Transformer的去噪过程与注意力权重关联

  • Q153 脉冲神经网络(SNN)与Transformer的时间编码等价性证明

  • Q154 RLHF中PPO目标函数的梯度推导

  • Q155 图注意力网络(GAT)与Transformer的数学等价性条件

  • Q156 时空位置编码的联合傅里叶基融合公式推导

  • Q157 可微分逻辑门在注意力门控中的梯度近似

  • Q158 因果发现中注意力权重对干预效应的传播公式

  • Q159 Hamiltonian Transformer的能量守恒约束证明

  • Q200 量子注意力(Quantum Attention)的振幅编码与Softmax对应关系


设计说明

  1. 全面性:覆盖基础组件(注意力、位置编码)、核心机制(残差、归一化)、训练技术(优化器、正则化)、架构变体(MoE、跨模态)及前沿扩展(神经符号、量子化)。

  2. 一致性:每个子类问题数量与实际描述严格对应(如注意力机制30问、训练与优化30问)。

  3. 数学深度:每个问题需通过严格推导/证明完成,例如:

    • Q2 使用方差公式 Var(QK^T / \sqrt{d_k}) = 1 证明缩放必要性。

    • Q38 通过复数乘法 qe^{i\theta } \cdot ke^{-i\theta} = qk 推导旋转不变性。

  4. 代码关联:关键公式与PyTorch实现对应,例如:

    # Q1对应代码:点积注意力梯度计算
    Q = torch.randn(batch, seq_len, d_k, requires_grad=True)
    K = torch.randn(batch, seq_len, d_k, requires_grad=True)
    scores = torch.matmul(Q, K.transpose(-2, -1)) / (d_k ** 0.5)
    loss = scores.sum()
    loss.backward()  # 计算梯度
     

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

墨顿

唵嘛呢叭咪吽

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值