TYVJ P1744 - 逆序对(加强版)

描述 Description
给定一个数字序列,求它的逆序对数,之后m条询问,格式为“A B”,表示假如把A位置的数改成B,逆序对数又是多少。注意是“假如”,也就是说,在处理完一条询问后,序列又恢复初始序列。
输入格式 InputFormat
第一行两个正整数m,n。
第二行有n个正整数,用空格隔开。
第三行到第m+2行,每行两个整数A,B,用空格隔开。
输出格式 OutputFormat
共m+1行,第一行为初始序列的逆序对数,接下来的m行分别对应每一条询问的新逆序对数。
样例输入 SampleInput [复制数据]
5 2
1 2 3 4 5
1 5
4 2

样例输出 SampleOutput [复制数据]
0
3
1
数据范围和注释 Hint
n<=100000
m<=100000
序列的每一元素<=500000
保证询问合法。

题解

改变一个数的大小,对逆序对的影响取决于改完后它前面有多少个比他大的数、后面有多少个比他小的数。所以我们考虑离线的做法。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#define ll long long
#define MAXN 100002
using namespace std;
int n,m,a[MAXN],maxs;
struct ques{int l,s;} b[MAXN];
int last[MAXN],pre[MAXN];
ll tr[MAXN*5],tot,v[MAXN],cg[MAXN];
void init()
{
	scanf("%d%d",&n,&m);
	int i;
	for(i=1;i<=n;i++)
	   {scanf("%d",&a[i]); maxs=max(maxs,a[i]);}
	for(i=1;i<=m;i++)
	   {scanf("%d%d",&b[i].l,&b[i].s);
	    pre[i]=last[b[i].l]; last[b[i].l]=i;
	   }
}
int lowbit(int x) {return x&(-x);}
ll find(int x)
{
	ll sum=0;
	for(;x>0;x-=lowbit(x))
	   sum+=tr[x];
	return sum;
}
void insert(int x)
{for(;x<=500002;x+=lowbit(x)) tr[x]++;}
void work()
{
	int i,j;
	for(i=1;i<=n;i++)
	   {j=last[i];
	    v[i]+=find(maxs)-find(a[i]);
	    tot+=v[i];
		while(j)
	       {cg[j]+=find(maxs)-find(b[j].s);
		    j=pre[j];
		   }
		insert(a[i]);
	   }
	memset(tr,0,sizeof(tr));
	for(i=n;i>0;i--)
	   {j=last[i];
	    v[i]+=find(a[i]-1);
	    while(j)
	       {cg[j]+=find(b[j].s-1);
		    j=pre[j];
		   }
		insert(a[i]);
	   }
	printf("%lld\n",tot);
	for(i=1;i<=m;i++)
	   printf("%lld\n",tot-v[b[i].l]+cg[i]);
}
int main()
{
	init(); work();
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值