【问题描述】
有 N 个人和每个人所认识人的列表,注意:即使B在A的列表中,A也不一定在B的列表中。现在小明有一个重要消息要通知这N个人,注意:如果A认识B,则当A得到这个消息,他就会立即通知B。
现在请你完成下面两个任务:
任务1:请你计算要让N个人都得到消息,那么小明必须把这个消息直接通知的人的最少数目。
任务2:如果小明想要只告诉这N个人中的任何一个人,其他所有人都能得到消息,那么可能需要在某些人的认识列表添加认识的新成员。请你计算,最少添加多少新成员,就可以让任何一个人得到消息,都能传到其他所有人。
【输入格式】
第一行包括一个整数 N:表示人数,这些人编号依次为1..N。
接下来 N 行中每行都表示一个认识关系的列表,第 i+1 行包括表示第 i 人认识的人的列表,每个列表用 0 结束,空列表只用一个 0 表示。
【输出格式】
第一行包括一个正整数:任务 1 的解。
第二行应该包括任务2 的解。
【输入样例】
5
2 4 3 0
4 5 0
0
0
1 0
【输出样例】
1
2
【数据范围】
N<=10000
/*
Name: Strongly_Connected_Components
Copyright: Twitter & Instagram @stevebieberjr
Author: @stevebieberjr
Date: 10-07-16 14:43
*/
#include<cstdio>
#include<cstring>
#include<vector>
#include<algorithm>
#define maxn 10005
using namespace std;
int n,belong[maxn],size[maxn],scc1,rd[maxn],cd[maxn];
vector<int>g[maxn],gr[maxn],gc[maxn],vs;
bool vis[maxn];
void DFS1(int i) //第一次在正向图上DFS生成后序遍历序列vs
{
vis[i]=1;
for(int k=0;k<g[i].size();k++)
{
int j=g[i][k];
if(!vis[j]) DFS1(j);
}
vs.push_back(i);
}
void DFS2(int i,int scc) //第二次在反向图上DFS获取能到达i的结点
{
belong[i]=scc; //i属于第scc个连通分量
size[scc]++; //第scc个连通分量顶点数增加1
for(int k=0;k<gr[i].size();k++)
{
int j=gr[i][k];
if(!belong[j]) DFS2(j,scc);
}
}
int find_scc()
{
memset(vis,0,sizeof(vis));
for(int i=1;i<=n;i++)
{
if(!vis[i]) DFS1(i); //第1次DFS,获取后序遍历序列
}
int scc=0;
memset(size,0,sizeof(size));
memset(belong,0,sizeof(belong));
for(int k=vs.size()-1;k>=0;k--)
{
int i=vs[k];
if(!belong[i]) DFS2(i,++scc); //第2次DFS获取强连通分量
}
return scc;
}
void suodian() //将每个强连通分量都分别缩成一个点
{
scc1=find_scc(); //两次DFS标记强连通分量和计算连通分量个数
for(int i=1;i<=n;i++) //扫描每条有向边
{
for(int k=0;k<g[i].size();k++)
{
int j=g[i][k]; //i,j之间有一条有向边i->j
if(belong[i]!=belong[j]) //若i与j属于不同的连通分量
{
gc[belong[i]].push_back(belong[j]); //用有向边连接连通分量belong[i]->belong[j]
cd[belong[i]]++; //连通分量belong[i]的出度增加1
rd[belong[j]]++; //连通分量belong[j]的入度增加1
}
}
}
}
void solve()
{
suodian();
int a=0,b=0;
for(int i=1;i<=scc1;i++)
{
if(rd[i]==0) a++;
if(cd[i]==0) b++;
} //计算入度出度为0的结点个数
printf("%d\n",a);
int ans=max(a,b); //缩点后找入度出度为0的结点个数的最大值就是答案
if(scc1==1) ans=0; //一开始就强连通了答案为0
printf("%d\n",ans);
}
int main()
{
//freopen("in.txt","r",stdin);
scanf("%d",&n);
int y;
for(int x=1;x<=n;x++)
{
while(scanf("%d",&y)==1)
{
if(y==0) break;
g[x].push_back(y);
gr[y].push_back(x);
} //建立存储结构
}
solve();
return 0;
}