【训练题】强连通分量缩点

【问题描述】
有 N 个人和每个人所认识人的列表,注意:即使B在A的列表中,A也不一定在B的列表中。现在小明有一个重要消息要通知这N个人,注意:如果A认识B,则当A得到这个消息,他就会立即通知B。

现在请你完成下面两个任务:

任务1:请你计算要让N个人都得到消息,那么小明必须把这个消息直接通知的人的最少数目。

任务2:如果小明想要只告诉这N个人中的任何一个人,其他所有人都能得到消息,那么可能需要在某些人的认识列表添加认识的新成员。请你计算,最少添加多少新成员,就可以让任何一个人得到消息,都能传到其他所有人。

【输入格式】
第一行包括一个整数 N:表示人数,这些人编号依次为1..N。
接下来 N 行中每行都表示一个认识关系的列表,第 i+1 行包括表示第 i 人认识的人的列表,每个列表用 0 结束,空列表只用一个 0 表示。

【输出格式】
第一行包括一个正整数:任务 1 的解。
第二行应该包括任务2 的解。

【输入样例】

5
2 4 3 0
4 5 0
0
0
1 0

【输出样例】

1
2

【数据范围】
N<=10000

/*
    Name: Strongly_Connected_Components
    Copyright: Twitter & Instagram @stevebieberjr
    Author: @stevebieberjr
    Date: 10-07-16 14:43
*/
#include<cstdio>
#include<cstring>
#include<vector>
#include<algorithm>
#define maxn 10005
using namespace std;

int n,belong[maxn],size[maxn],scc1,rd[maxn],cd[maxn];
vector<int>g[maxn],gr[maxn],gc[maxn],vs;
bool vis[maxn];

void DFS1(int i) //第一次在正向图上DFS生成后序遍历序列vs 
{
    vis[i]=1;
    for(int k=0;k<g[i].size();k++)
    {
        int j=g[i][k];
        if(!vis[j]) DFS1(j);
    }
    vs.push_back(i);
}

void DFS2(int i,int scc) //第二次在反向图上DFS获取能到达i的结点 
{
    belong[i]=scc; //i属于第scc个连通分量 
    size[scc]++; //第scc个连通分量顶点数增加1 
    for(int k=0;k<gr[i].size();k++)
    {
        int j=gr[i][k];
        if(!belong[j]) DFS2(j,scc);
    }
}

int find_scc()
{
    memset(vis,0,sizeof(vis));
    for(int i=1;i<=n;i++)
    {
        if(!vis[i]) DFS1(i); //第1次DFS,获取后序遍历序列
    }

    int scc=0;
    memset(size,0,sizeof(size));
    memset(belong,0,sizeof(belong));

    for(int k=vs.size()-1;k>=0;k--)
    {
        int i=vs[k];
        if(!belong[i]) DFS2(i,++scc); //第2次DFS获取强连通分量
    }
    return scc;
}

void suodian() //将每个强连通分量都分别缩成一个点 
{
    scc1=find_scc(); //两次DFS标记强连通分量和计算连通分量个数
    for(int i=1;i<=n;i++) //扫描每条有向边 
    {
        for(int k=0;k<g[i].size();k++)
        {
            int j=g[i][k]; //i,j之间有一条有向边i->j 
            if(belong[i]!=belong[j]) //若i与j属于不同的连通分量 
            {
                gc[belong[i]].push_back(belong[j]); //用有向边连接连通分量belong[i]->belong[j]
                cd[belong[i]]++; //连通分量belong[i]的出度增加1
                rd[belong[j]]++; //连通分量belong[j]的入度增加1
            }
        }
    }
}

void solve()
{
    suodian();
    int a=0,b=0;
    for(int i=1;i<=scc1;i++)
    {
        if(rd[i]==0) a++;
        if(cd[i]==0) b++;
    } //计算入度出度为0的结点个数
    printf("%d\n",a);
    int ans=max(a,b); //缩点后找入度出度为0的结点个数的最大值就是答案
    if(scc1==1) ans=0; //一开始就强连通了答案为0
    printf("%d\n",ans);
}

int main()
{
    //freopen("in.txt","r",stdin);
    scanf("%d",&n);
    int y;
    for(int x=1;x<=n;x++)
    {
        while(scanf("%d",&y)==1)
        {
            if(y==0) break;
            g[x].push_back(y);
            gr[y].push_back(x);
        } //建立存储结构 
    }
    solve();

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值