强连通分量-tarjan算法缩点

 一. 什么是强连通分量?

强连通分量:在有向图G中,如果两个顶点u,v间(u->v)有一条从u到v的有向路径,同时还有一条从v到u的有向路径,则称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量。
简单点说就是:如果一个有向图中,存在一条回路,所有的结点至少被经过一次,这样的图为强连通图。
在强连图图的基础上加入一些点和路径,使得当前的图不在强连通,称原来的强连通的部分为强连通分量。

二. 强连通分量有什么用途呢?

在图论中,我们可以利用强连通分量进行缩点,从而可以减少很多不必要的操作,降低程序的时间复杂度。

三. tarjan求强连通分量

在讲tarjan算法之前我们先来讲几个概念:
1.树枝边:x是y的父节点,那么x到y的边称为树枝边。
2.前向边:x是y的祖先节点,那么x到y的边称为前向边。
3.后向边:x是y的的祖先节点,那么y到x的边称为后向边。
4.横叉边:x是y的祖先节点,并且y能到达已经搜过的点,那么这条边被称为横叉边。

根据定义可以得知:树枝边也是一个特殊的前向边。
我们在深度优先搜索的时候是从上向下搜的,所以画图看一下(自己画的图,可能有点丑 )
3951ea4ea6d74e628cfd978653bc9484.png#pic_center
知道这些定义后,我们来看一下tarjan算法是如何求强连通分量的。
在这里,我们引入一个时间戳的概念:在深度优先搜索的时候,当前结点x是第几个被搜索到的,记为df[x]。
对于每一个结点,我们定义两个时间戳。
df[x]:x结点是第几个被搜索到的。
low[x]:从x结点开始搜索,能搜索到深度最低的结点是什么,也就是能搜索到时间戳最小的结点。
在搜索的时候我们该如何判断是一个新的强连通分量呢?
如果一个图是强连通的话,那么必然会搜完他图中的所有结点,并且从任意一个结点到达另一个结点,所以强连通分量中的点都可以遍历到时间戳更小的点。
所以我们可以发现,如果一个结点的df[]==low[]的话,那么说明这个结点是不能搜到比自己的时间戳更小的点了。说明什么呢?说明该节点就是一个强连通分量的最高点,也就是一个新的强连通分量。

下面放入一个题(受欢迎的牛):

每一头牛的愿望就是变成一头最受欢迎的牛。

现在有 N 头牛,编号从 1 到 N,给你 M 对整数 (A,B),表示牛 A 认为牛 B 受欢迎。

这种关系是具有传递性的,如果 A 认为 B 受欢迎,B 认为 C 受欢迎,那么牛 A 也认为牛 C 受欢迎。

你的任务是求出有多少头牛被除自己之外的所有牛认为是受欢迎的。

输入格式
第一行两个数 N,M;

接下来 M 行,每行两个数 A,B,意思是 A 认为 B 是受欢迎的(给出的信息有可能重复,即有可能出现多个 A,B)。

输出格式
输出被除自己之外的所有牛认为是受欢迎的牛的数量。

数据范围
1≤N≤10^4,
1≤M≤5×10^4
输入样例:
3 3
1 2
2 1
2 3
输出样例:
1
样例解释
只有第三头牛被除自己之外的所有牛认为是受欢迎的。

这题乍一看是传递闭包,第一时间会想到Floyd,但是看了数据范围之后发现传递闭包会超时,所以Floyd是不可行的。

我们用强连通分量来做。
题意:a->b且b->c,则a->c

要求的是有多少头牛被除自己之外的所有牛认为是受欢迎的(受欢迎的牛可以被其他的牛走到)。

总结:当一个强连通的出度为0,则该强连通分量中的所有点都被其他强连通分量的牛欢迎,但假如存在两及以上个出度=0的牛(强连通分量) 则必然有一头牛(强连通分量)不被所有牛欢迎。

AC代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

const int N=1e4+10,M=5*N;

int h[N],e[M],ne[M],idx;  //邻接表
int id[N];   //id[x]:x结点属于第几个强连通分量
int cnt,times;  //cnt:强连通分量的个数,times:时间戳
int n,m;
bool st[N];  //st[x]:x结点是否在栈中
int df[N],low[N];  //df[x]:x结点第一次被搜索到的时间戳,low[x]:x结点能遍历到最高的点
int sizes[N];  //sizes[x]:第x强连通分量中点的个数
int stack[N],top;  //这里我们用数组模拟栈
int dout[N];  //dout[x]:第x个强连通分量的出度

void add(int a,int b){
    e[idx]=b;
    ne[idx]=h[a];
    h[a]=idx++;
}

void tarjan(int u){
    //当前点的时间戳
    df[u]=low[u]=++times;
    //把u点入栈
    stack[++top]=u;
    st[u]=true;
    //遍历u结点能到的点
    for(int i=h[u];i!=-1;i=ne[i]){
        int j=e[i];
        if(!df[j]){  //如果没有遍历过,那么就遍历它
            tarjan(j);
            low[u]=min(low[u],low[j]);
        }
        else if(st[j]) low[u]=min(low[u],low[j]);  //如果在栈中
    }
    
    //找到一个强连通分量
    if(df[u]==low[u]){
        cnt++;
        int t=stack[top--];
        id[t]=cnt;
        st[t]=false;
        sizes[cnt]++;
        while(t!=u){
            t=stack[top--];
            id[t]=cnt;
            st[t]=false;
            sizes[cnt]++;
        }
    }
}

int main(){
    scanf("%d%d",&n,&m);
    memset(h,-1,sizeof h);
    while(m--){
        int a,b;
        scanf("%d%d",&a,&b);
        add(a,b);
    }
    
    for(int i=1;i<=n;i++){
        if(!df[i]){
            tarjan(i);
        }
    }
    
    for(int i=1;i<=n;i++){
        for(int j=h[i];j!=-1;j=ne[j]){
            int t=e[j];
            int a=id[i],b=id[t];  //a:i结点所在的强连通分量,b:t结点所在的强连通分量
            if(a!=b) dout[a]++;  //因为是a->b,所以a的出度++
        }
    }
    
    int zero=0;  //出度为0点的个数
    int sum=0;
    for(int i=1;i<=cnt;i++){
        if(!dout[i]){
            sum+=sizes[i];
            zero++;
        }
    }
    
    if(zero>1) printf("%d",0);
    else printf("%d",sum);
    
    return 0;
}

  • 4
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小陈同学_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值