迪杰斯特拉算法求最短路(简易算法版)

迪杰斯特拉算法是用于求解单源最短路径问题的有效方法,其核心思想是从源点开始,逐步找到最近的未处理节点并更新最短路径。在每次迭代中,算法会选择当前最短路径集合中与源点距离最近的节点,通过松弛操作不断优化路径长度。该算法与普里姆算法类似,适用于图论中的路径搜索问题。
摘要由CSDN通过智能技术生成

迪杰斯特拉算法适用于单源点求最短路的情况,即求一个点到其他点最短距离。它的思想与普里姆算法求最小生成树类似。

迪杰斯特拉算法思想:

用一个dis数组存放各个点到源点的距离,每次循环找离源点最近的点,确认后加入到已知最短路的集合中,并标记(下次再找离源点最近的点的时候,被标记的点就直接跳过了,因为它已经在最短路里了),然后根据找到的这个最近的点进行延伸,分析与它相连的点
如果
初始源点到最近点的距离+与它相连的这个点的距离<初始源点到这个点的直接距离,那么就松弛它。(松弛:意思就是更新原来dis数组里源点到这个点的值,这个词在图的算法里经常用到),然后循环这个操作N-1次(或N次,N为所有顶点数),最后更新后的dis数组里就是源点到其余各点的距离。

#include <bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f
int dis[100],N,M,G[100][100],book[100];//dis里的数组就是源点1到各点的最短路距离  G为邻接矩阵 book为标记数组 
void dijkstra()
{
   
	int
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

乔梦圆的博客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值