迪杰斯特拉算法适用于单源点求最短路的情况,即求一个点到其他点最短距离。它的思想与普里姆算法求最小生成树类似。
迪杰斯特拉算法思想:
用一个dis数组存放各个点到源点的距离,每次循环找离源点最近的点,确认后加入到已知最短路的集合中,并标记(下次再找离源点最近的点的时候,被标记的点就直接跳过了,因为它已经在最短路里了),然后根据找到的这个最近的点进行延伸,分析与它相连的点,
如果
初始源点到最近点的距离+与它相连的这个点的距离<初始源点到这个点的直接距离,那么就松弛它。(松弛:意思就是更新原来dis数组里源点到这个点的值,这个词在图的算法里经常用到),然后循环这个操作N-1次(或N次,N为所有顶点数),最后更新后的dis数组里就是源点到其余各点的距离。
#include <bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f
int dis[100],N,M,G[100][100],book[100];//dis里的数组就是源点1到各点的最短路距离 G为邻接矩阵 book为标记数组
void dijkstra()
{
int