Journal of Visual Communication and Image Representation投稿经验

中科院三区期刊

Journal of Visual Communication and Image Representation

时间节点:

2022年7月11日提交;
2022年10月17日收到修订版;
2022年12月10日接受

速度中等,审稿仔细,

三个审稿人,评价标准如下:

1. 是否明确说明了研究的目标和原理?

请就如何提高研究目标的清晰度和基本原理向作者提供建议。请为每条建议编号,以便作者更容易做出回应。

审稿人 #1:是的。

审稿人#2:是的

审稿人 #3:不。请参阅下面的评论。


2. 如果适用,应用/理论/方法/研究报告是否足够详细,以允许其可复制性和/或再现性?

审稿人#1:用 X 标记为适当:
是 [] 否 [x] N/A []

评审人 #2:用 X 标记为适当的:
是 [] 否 [√] N/A [ ]

审阅者 #3:在适当时用 X 标记:
是 [] 否 [X] N/A []


3. 如果适用,统计分析、控制、抽样机制和统计报告(例如 P 值、CI、效应大小)是否适当并且描述得很好?
请明确说明稿件是否需要统计学家进行额外的同行评审。请就如何改进统计分析、控制、抽样机制或统计报告向作者提供建议。请为每条建议编号,以便作者可以更轻松地做出回应。

审稿人#1:适当地用 X 标记:
是 [X] 否 [] N/A []

评审人 #2:适当地用 X 标记:
是 [] 否 [√] N/A [ ]

审稿人 #3:用 X 标记为适当:
是 [] 否 [x] 不适用 []


4. 手稿能否受益于额外的表格或数字,或改进或删除(某些)现有的?

请对图表的改进、删除或添加提出具体建议。请为每条建议编号,以便作者更容易做出回应。

审稿人 #1:没有

审稿人 #2:没有

审稿人#3:是的。请参阅下面的评论。


5. 如果适用,数据是否支持对结果和研究结论的解释?

请就如何改进、淡化或扩展研究解释/结论向作者提供建议(如果需要)。请为每条建议编号,以便作者可以更轻松地做出回应。

审稿人#1:酌情标记 X:
是 [] 否 [] N/A [X]

审稿人 #2:适当标记 X:
是 [] 否 [√] N/A [ ]

审阅者 #3:在适当时用 X 标记:
是 [] 否 [X] N/A []


6. 作者是否清楚地强调了他们的研究/理论/方法/论点的优势?

请就如何更好地强调他们的研究优势向作者提供建议。请为每条建议编号,以便作者可以更轻松地做出回应。

1 号评审员:是

2 号评审员:没有

3 号评审员:部分。


7. 作者是否清楚地说明了他们的研究/理论/方法/论点的局限性?

请列出作者需要添加或强调的限制。请为每个限制编号,以便作者可以更轻松地做出回应。

1 号评审员:是

2 号评审员:没有

3 号评审员:是的。


8. 稿件结构、流程或写作是否需要改进(例如,添加副标题、缩短文本、重新组织部分或移动从一个部分到另一个部分的详细信息)?

请就如何改进稿件结构和流程向作者提供建议。请为每条建议编号,以便作者更容易做出回应。

审稿人#1:写作可以改进,尤其是关键估计程序。

审稿人 #2:是

审稿人 #3:是的。请参阅下面的评论。


9. 稿件可以从语言编辑中受益吗?

1 号评审员:是

2 号评审员:是

3 号评审员:是

一审给大修,二审录用

### 大规模掩码视觉表征学习的极限与挑战 大规模掩码视觉表征学习(Masked Visual Representation Learning, MVRL)在计算机视觉领域取得了显著进展,但仍面临诸多局限性和挑战。 #### 数据需求与计算资源消耗 MVRL依赖于大量标注数据来训练深层神经网络。然而,获取高质量的大规模图像数据集不仅成本高昂而且耗时费力。此外,处理这些海量的数据需要强大的硬件支持和长时间的运算周期,这对研究机构和个人开发者构成了巨大障碍[^1]。 #### 表征能力瓶颈 尽管通过自监督方法可以有效减少对手动标签的需求并提高泛化性能,但在某些复杂场景下,当前模型可能无法捕捉到足够的语义信息或空间关系特征,从而影响最终效果。例如,在细粒度分类任务中,仅依靠局部区域遮挡策略难以充分表达目标对象的整体特性[^2]。 #### 泛化性不足 现有技术往往针对特定类型的变换进行了优化设计,当遇到未曾见过的新颖变化形式时表现不佳。比如旋转角度较大、尺度差异明显等情况可能导致预训练阶段学到的知识失效,进而降低迁移至下游应用的效果稳定性。 #### 跨模态融合难题 为了实现更加鲁棒可靠的多源感知理解功能,如何有效地将来自不同感官通道的信息结合起来成为了一个亟待解决的问题之一。目前大多数工作主要集中在单一视域内的探索上,对于跨媒体间交互作用机制的研究相对较少,这限制了其实际应用场景范围扩展的可能性。 ```python import torch.nn as nn class MaskedImageModel(nn.Module): def __init__(self): super(MaskedImageModel, self).__init__() # Define layers here def forward(self, x): pass # Implement forward propagation logic ```
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凌峰的博客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值