💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
一、分布式鲁棒优化(DRO)算法分类及核心模型
摘要:
能源市场的自由化、可再生能源的渗透、先进的计量能力以及对情境感知的需求,都要求进行系统范围的电力系统状态估计(PSSE)。然而,由于互联的复杂性、实时监测中的通信瓶颈、区域披露政策和可靠性问题,实施集中式估计器实际上是不可行的。在这种背景下,分布式PSSE方法在一个统一且系统的框架下进行了研究。基于交替方向乘子法的新型算法被开发出来。它利用现有的PSSE求解器,尊重隐私政策,具有较低的通信负载,并且即使在缺乏局部可观察性的情况下,其收敛到集中式估计的特性也能得到保证。除了传统的最小二乘PSSE,这个分散式框架还容纳了一个强健的状态估计器。通过利用与压缩采样进展的有趣联系,后者联合估计状态并识别损坏的测量结果。这些新颖的算法在IEEE 14、118节点和4200节点的基准测试中进行了数值评估。模拟结果表明,通过几个区域间的交流,可以达到可接受的准确性,而且能够超越最大残差测试。
电网监控基础设施现代化有两个关键问题:首先,PSSE应在互连级别执行。然而,互连可能包括数千条总线,而每个状态通常需要 2-3 次测量。还需要实时处理以及对损坏数据的弹性,这使得集中状态估计在计算上变得强大。
1. 基于概率距离的DRO方法
(1) Wasserstein距离模糊集构建
- 求解策略:通过强对偶定理将双层优化转化为单层半定规划(SDP)或线性规划(LP),利用列与约束生成(C&CG)算法迭代求解。
- 应用案例:在IEEE 30-bus系统中实现无功优化调度,相比传统方法降低15%的电压偏差。
(2) Kullback-Leibler(KL)散度方法
- 核心模型:构建模糊集DKL(P∣∣P0)≤ε,其中P0为参考分布。目标函数需处理非凸优化问题。
- 特点:适用于离散概率分布场景,但需处理大规模场景下的计算复杂度。
2. 基于矩信息的DRO方法
- 模型构建:利用均值、协方差等统计矩约束模糊集,如EP[ξ]=μEP[ξ]=μ, EP[(ξ−μ)(ξ−μ)T]⪯ΣEP[(ξ−μ)(ξ−μ)T]⪯Σ。
- 求解方法:通过S-lemma将内层优化转化为半定规划,结合拉格朗日对偶简化计算。
- 优势:计算效率高,但依赖精确的矩信息,对高阶矩敏感性较强。
3. 数据驱动的两阶段优化模型
-
框架设计:
-
第一阶段决策固定变量xx,第二阶段应对最恶劣分布下的调整变量yy。
-
求解算法:采用C&CG算法分解主问题(经济调度)与子问题(最坏分布搜索),通过交替迭代实现收敛。
-
应用验证:在含风光储的微电网中,相比随机优化(SO)和鲁棒优化(RO),运行成本降低9.4%且调节次数减少22%。
4. 分布式求解算法
(1) 自适应步长ADMM
- 改进机制:动态调整惩罚参数和步长,定义收敛因子ηk=∥rk∥/∥sk∥ηk=∥rk∥/∥sk∥,其中rkrk为原始残差,sksk为对偶残差。
- 性能提升:在配电网优化中,收敛速度提升40%,通信带宽需求降低30%。
(2) 最优决策树(ODT)方法
- 创新点:将DRO与机器学习结合,通过决策树划分场景空间,实现机组出力的快速决策。时间复杂度从O(n3)O(n3)降至O(nlogn)O(nlogn)。
- 案例:梯级水电-风光联合系统调度中,日内决策时间缩短至5秒级。
二、算法性能对比分析
1. 计算复杂度与收敛速度
算法类别 | 时间复杂度 | 收敛速度影响因素 | 典型场景计算时间 |
---|---|---|---|
Wasserstein DRO | O(N^3)(高维问题) | Wasserstein球半径、样本量 | IEEE 30-bus: 120s |
两阶段C&CG | O(K·(m+n)) | 主-子问题迭代次数K | 微电网案例: 15次迭代 |
自适应ADMM | O(T·n) | 残差阈值、步长调节策略 | 配电网: 50次迭代 |
基于矩信息的DRO | O(m^2) | 矩阶数、半定规划规模 | 综合能源系统: 60s |
注:Wasserstein方法因需处理最优运输问题,在123-bus系统中计算时间达300s,而ADMM通过分布式架构将计算负载分散至多个区域。
2. 鲁棒性与经济性权衡
- 保守性对比:RO > DRO > SO,其中DRO通过调节Wasserstein半径εε实现可控保守性。当ε=0.1ε=0.1时,经济性损失仅5%,但故障率下降70%。
- 灵活性量化:基于Copula理论的方法能捕捉风光出力时空相关性,在含30%可再生能源的系统中,调节成本降低12%。
3. 噪声与不确定性适应能力
- Wasserstein DRO:对分布偏移敏感度低,在±20%预测误差下仍保持90%的调度方案可行性。
- 生成对抗网络(GAN) :通过生成对抗样本增强训练数据,使LSTM预测模型的MAE降低18%。
三、典型应用场景与仿真结果
1. 输电网状态估计
- 案例:采用Wasserstein DRO的IEEE 14-bus系统状态估计,量测误差容忍度提升至15%,估计精度达98.7%。
- 对比:传统加权最小二乘法(WLS)在10%不良数据下失效,而DRO方法仍保持85%准确率。
2. 配电网优化调度
- 多时间尺度调度:基于模型预测控制(MPC)的微电网调度中,DRO方法相比RO降低9.41%成本,且电压越限概率从12%降至3%。
- 源-荷协同:在含电动汽车的配电网中,两阶段DRO模型通过分时电价策略降低峰谷差25%。
3. 多区域互联系统
- 负荷频率控制:基于LMI的分布式预测控制算法在4区域互联系统中,频率偏差降低62%,且抗通信延迟能力提升。
- 跨区电力交易:采用ADMM的双层DRO模型,在6区域系统中减少27%的输电阻塞成本。
四、未来研究方向
- 高维数据挑战:针对Wasserstein方法的维度诅咒,探索稀疏化传输计划(如Sinkhorn算法)。
- 混合不确定性建模:耦合概率距离与矩信息构建复合模糊集,例如"Wasserstein+矩"联合约束。
- 边缘计算架构:将DRO与联邦学习结合,实现隐私保护下的分布式状态估计。
- 实时性提升:开发面向GPU加速的DRO求解器,目标在1秒内完成千节点系统优化。
本报告综合了当前主流DRO算法在电力系统状态估计中的理论进展与实际应用,揭示了不同方法在计算效率、鲁棒性、可扩展性等方面的差异化特性,为后续研究与实践提供了系统化参考。
📚2 运行结果
2.1 算例1
导出结果图:
然后剩下的算例直接导出结果图,更清晰一点。
2.2 算例2
2.3 算例3
2.4 算例4
2.5 算例5
2.6 算例6
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
V. Kekatos and G. B. Giannakis, "Distributed Robust Power System State Estimation," in IEEE Transactions on Power Systems, vol. 28, no. 2, pp. 1617-1626, May 2013, doi: 10.1109/TPWRS.2012.2219629.