leetcode 18. 四数之和(优质解法)

代码:

class Solution {
    public List<List<Integer>> fourSum(int[] nums, int target) {
        List<List<Integer>> lists=new ArrayList<>();

        int length=nums.length;
        Arrays.sort(nums);

        for(int i=0;i<=length-4;){
            for(int j=i+1;j<=length-3;){
                //先固定两个数,再采用双指针和利用有序数组单调性来找到符合条件的另外两个数
                //加减操作很可能会溢出,所以最好用 long 类型
                long LRTarget=(long) target-nums[i]-nums[j];

                int left=j+1;
                int right=length-1;
                while (left<right){
                    long newLR=nums[left]+nums[right];
                    if(newLR<LRTarget){
                        left++;
                    }else if(newLR>LRTarget){
                        right--;
                    }else {
                        //符合条件,记录当前的 nums[i],nums[j],nums[left],nums[right]
                        lists.add(Arrays.asList(nums[i],nums[j],nums[left],nums[right]));
                        left++;
                        right--;
                        //去重操作
                        //一般在容器中进行死循环移动都要考虑边界问题
                        while (left<right&&nums[left]==nums[left-1]){
                            left++;
                        }
                        while (left<right&&nums[right]==nums[right+1]){
                            right--;
                        }
                    }
                }
                //当前固定的 num[j] 的所有情况都找到了
                j++;
                while (j<=length-3&&nums[j]==nums[j-1]){
                    j++;
                }
            }

            //当前固定的 num[i] 的所有情况都找到了
            i++;
            while (i<=length-4&&nums[i]==nums[i-1]){
                i++;
            }
        }

        return lists;
    }
}

题解:

        我们要在数组中选出相加为 0 的三个数,要选出符合条件的多个数,我们可以尝试采用先排序,利用有序数组的单调性和双指针的方式解决

        四数之和的求解方法和三数之和几乎一样,只是多了一个固定的数而已,推荐先看leetcode 15. 三数之和(优质解法)

          首先对于示例 ,-1,-1,3,0,5,-1,3,0, target = 1 经过排序以后得到 -1.-1,-1,0,0,3.,3,5由于此时我们要获取 4 个数,而采用双指针的方式只能探讨两个数的选择,所以我们可以先固定两个数,先用指针 i 指向要固定的数 -1,指针 j 指向要固定的数 -1,此时我们只需要在 j 右边的区间内找到两个数,使 nums[ L ] + nums[ R ]= target - nums[ i ] - nums[ j ] 即可,此时 nums[ L ] + nums[ R ]=1-(-1)-(-1)=3

        如下图,让指针 L 指向右边区间最小的数,指针 R 指向右边区间最大的数,此时 nums[ L ] + nums[ R ] = -1+5 = 4 > 3, 就需要取的两数之和小一点,此时 L 指针已经是区间中最小的了,所以需要淘汰大的数 5, R - -

-1        -1        -1        0        0        3        3        5

 i           j          L                                                R

        此时 nums[ L ] + nums[ R ] = -1+3=2 < 3 ,就需要取的两数之和大一点,此时 R 指针已经是区间中最大的了,所以需要淘汰小的数 -1,L++

-1        -1        -1        0        0        3        3        5

 i           j          L                                      R

         此时 nums[ L ] + nums[ R ] = 0+3=3 == 3,符合条件,就记录当前 nums[ i ] , nums[ j ] ,nums[ L ] ,nums[ R ] 的值,由于需要找出所有的情况,所以现在还不能停止,让 L++,R- -,继续寻找符合条件的数据

-1        -1        -1        0        0        3        3        5

 i           j                    L                            R

        题目中有要求,要去除重复的数据,当我们排序以后相同的数据都会靠在一起,我们上一轮已经将 nums[ L ] 为 0 的值获取了,此时 nums[ L ] 依然为 0,即使有符合条件的 nums[ R ] 也是重复的要排除掉,所以当 nums[ L ] == nums[ L-1 ] 时,就直接 L ++ 跳过(在跳过时要注意边界问题),对于 R 指针也是一样的处理,当 nums[ R ] == nums[ R+1 ] 时,就直接 R- - 跳过

-1        -1        -1        0        0        3        3        5

 i           j                              L        R        

        当 L == R 时就说明当前固定的 nums[ j ] 的情况已经全部发现了,就需要 j++,但其中也涉及到数据重复的问题,j ++ 以后指向的值依然为 -1 ,代表要在右边的区间寻找两个和为 3 的数,但之前已经寻找过了,现在再找一遍也只会找到同样的数据,所以当 nums[ j ] == nums[ j+1 ] 时就直接 j++ 跳过,对于下标 i 也一样,当nums[ i ] == nums[ i+1 ] 时就直接 i++ 跳过

-1        -1        -1        0        0        3        3        5

 i                      j                            R        

                                                      L         

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小林想被监督学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值