2025最新WIN11/WIN10安装最新稳定版本Python3.11.0 + Pytorch 2.5.1 + CUDA 12.4 + cuDNN超详细完美图文教程(避坑指南)


前言

本文是关于windows系统下如何在conda环境下需要切换不同Python环境以及Pytorch版本,所对应的CUDA和cuDNN版本的个人学习笔记以及避坑指南,另外也包括切换CUDA版本的环境变量的注意事项。

一、NVIDIA Studio 驱动程序

1.获取本机NVIDIA Studio 驱动程序

此步骤是为了获取NVIDIA Studio 驱动程序版本以及最高可支持的CUDA版本(附驱动安装教程)。

在cmd(windows直接搜索cmd或者命令提示符)中输入:

nvidia-smi

可得到下图:
在这里插入图片描述

上图中Driver Version指目前NVIDIA Studio 驱动程序版本,CUDA Version即最高可支持使用的CUDA版本,后者上限可以通过更新前者驱动程序来提高。

2.NVIDIA Studio 驱动程序安装

如果没有安装显卡驱动程序,可以访问NVIDIA官网(https://www.nvidia.cn/geforce/drivers/)根据自己的系统信息选择相对应的版本下载,如下图(也可选择“自动更新驱动程序”一键立即下载):
驱动版本选择

其中,产品系列的选择方法如下图:
如何确认自己的显卡是什么型号

后续驱动程序版本更新可以在软件里面自行更新。

二、CUDA与cuDNN安装

在上面的步骤中我们可以得知CUDA版本 <= 12.8,那么此时具体安装哪个版本呢?可以根据项目需要的Pytorch版本来决定,然后根据其所支持的CUDA版本来取交集,下载相对应的CUDA和Pytorch版本,具体如下:

1.确定Pytorch版本与CUDA版本

访问Pytorch官方旧版本详情(https://pytorch.org/get-started/previous-versions/),选择所需要的Pytorch版本。

示例:
在这里插入图片描述
上图是Pytorch V2.5.1 对应的CUDA版本有11.8,12.1,12.4,如果Pytorch版本过老,不支持那么新的CUDA版本,可能会发生torch.cuda.is_available()返回False的情况。

本文基于国内清华源于笔者编辑时最新支持Pytorch V2.5.1,故选择Pytorch V2.5.1(Pytorch最新版本在latest version界面,注意该界面有表示Python最低需要3.9以上,笔者选择目前最新长期稳定版本的Python3.11.0,见官网版本发布界面),CUDA 12.4 为例。

2.Visual Studio安装

安装CUDA之前要安装Visual Studio。
访问Visual Studio官网(https://visualstudio.microsoft.com/zh-hans/downloads/)&

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值