文章目录
前言
本文是关于windows系统下如何在conda环境下需要切换不同Python环境以及Pytorch版本,所对应的CUDA和cuDNN版本的个人学习笔记以及避坑指南,另外也包括切换CUDA版本的环境变量的注意事项。
一、NVIDIA Studio 驱动程序
1.获取本机NVIDIA Studio 驱动程序
此步骤是为了获取NVIDIA Studio 驱动程序版本以及最高可支持的CUDA版本(附驱动安装教程)。
在cmd(windows直接搜索cmd或者命令提示符)中输入:
nvidia-smi
可得到下图:
上图中Driver Version指目前NVIDIA Studio 驱动程序版本,CUDA Version即最高可支持使用的CUDA版本,后者上限可以通过更新前者驱动程序来提高。
2.NVIDIA Studio 驱动程序安装
如果没有安装显卡驱动程序,可以访问NVIDIA官网(https://www.nvidia.cn/geforce/drivers/)根据自己的系统信息选择相对应的版本下载,如下图(也可选择“自动更新驱动程序”一键立即下载):
其中,产品系列的选择方法如下图:
后续驱动程序版本更新可以在软件里面自行更新。
二、CUDA与cuDNN安装
在上面的步骤中我们可以得知CUDA版本 <= 12.8,那么此时具体安装哪个版本呢?可以根据项目需要的Pytorch版本来决定,然后根据其所支持的CUDA版本来取交集,下载相对应的CUDA和Pytorch版本,具体如下:
1.确定Pytorch版本与CUDA版本
访问Pytorch官方旧版本详情(https://pytorch.org/get-started/previous-versions/),选择所需要的Pytorch版本。
示例:
上图是Pytorch V2.5.1 对应的CUDA版本有11.8,12.1,12.4,如果Pytorch版本过老,不支持那么新的CUDA版本,可能会发生torch.cuda.is_available()
返回False的情况。
本文基于国内清华源于笔者编辑时最新支持Pytorch V2.5.1,故选择Pytorch V2.5.1(Pytorch最新版本在latest version界面,注意该界面有表示Python最低需要3.9以上,笔者选择目前最新长期稳定版本的Python3.11.0,见官网版本发布界面),CUDA 12.4 为例。
2.Visual Studio安装
安装CUDA之前要安装Visual Studio。
访问Visual Studio官网(https://visualstudio.microsoft.com/zh-hans/downloads/)&