李宏毅机器学习入门学习笔记(五) Classification:Logistic Regression

本文介绍了逻辑回归的基本概念,包括函数集、损失函数和寻找最佳函数的方法。通过对比逻辑回归与线性回归,解释了为何逻辑回归更适合分类问题。文章还探讨了逻辑回归与生成模型的区别,多类别分类中的Softmax函数及其应用,以及逻辑回归的局限性和应对策略,如特征转换和级联模型。
摘要由CSDN通过智能技术生成

Step1 逻辑回归的函数集

上一篇讲到分类问题的解决方法,推导出函数集的形式为:

在这里插入图片描述

将函数集可视化:

在这里插入图片描述

图中z写错了,应该是 z=∑iwixi+bz=∑iwixi+b。这种函数集的分类问题叫做 Logistic Regression(逻辑回归),将它和第二篇讲到的线性回归简单对比一下函数集:

在这里插入图片描述

Step2 定义损失函数

在这里插入图片描述
上图有一个训练集,每个对象分别对应属于哪个类型(例如 x3x3 属于 C2C2 )。假设这些数据都是由后验概率 fw,b(x)=Pw,b(C1|x)fw,b(x)=Pw,b(C1|x)产生的。

给定一组 w和b,就可以计算这组w,b下产生上图N个训练数据的概率,

L(w,b)=fw,b(x1)fw,b(x2)(1−fw,b(x3))⋯fw,b(xN)(1−1)
L(w,b)=fw,b(x1)fw,b(x2)(1−fw,b(x3))⋯fw,b(xN)(1−1)
对于使得 L(w,b)L(w,b)最大的ww和 bb,记做w∗w∗ 和 b∗b∗ ,即:

w∗,b∗=argmaxw,bL(w,b)(1−2)
w∗,b∗=arg⁡maxw,bL(w,b)(1−2)
将训练集数字化,并且将式1-2中求max通过取负自然对数转化为求min :

在这里插入图片描述

然后将−lnL(w,b)−ln⁡L(w,b)改写为下图中带蓝色下划线式子的样子:

在这里插入图片描述

图中蓝色下划线实际上代表的是两个伯努利分布(0-1分布,两点分布)的 cross entropy(交叉熵)

假设有两个分布 p 和 q,如图中蓝色方框所示,这两个分布之间交叉熵的计算方式就是 H(p,q)H(p,q);交叉熵代表的含义是这两个分布有多接近,如果两个分布是一模一样的话,那计算出的交叉熵就是0

交叉熵的详细理论可以参考《Information Theory(信息论)》,具体哪本书我就不推荐了,由于学这门科目的时候用的是我们学校出版的教材。。。没有其他横向对比,不过这里用到的不复杂,一般教材都会讲到。

下面再拿逻辑回归和线性回归作比较,这次比较损失函数:

在这里插入图片描述

此时直观上的理解:如果把function的输出和target(真正的function ynyn)都看作是两个伯努利分布,所做的事情就是希望这两个分布越接近越好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值