分治算法

分治算法


算法概念
分治算法的基本思想是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题相互独立且与原问题性质相同。求出子问题的解,就可得到原问题的解。即一种分目标完成程序算法,简单问题可用二分法完成。


算法步骤
  1. 分解,将要解决的问题划分成若干规模较小的同类问题;

  1. 求解,当子问题划分得足够小时,用较简单的方法解决;

  1. 合并,按原问题的要求,将子问题的解逐层合并构成原问题的解。

适用条件
1、该问题的规模缩小到一定的程度就可以容易地解决; 

2、该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。 

3、利用该问题分解出的子问题的解可以合并为该问题的解; 

4、该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。 

(上述的第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;第二条特征是应用分治法的前提,它也是大多数问题可以满足的,此特征反映了递归思想的应用; 第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征, 如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑贪心法或动态规划法。 第四条特征涉及到分治法的效率,如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。

示例
求x的n次幂
复杂度为 O(lgn) 的分治 算法
#include "stdio.h"
#include "stdlib.h"
int power( int x , int n){
int result;
if (n == 1 )
return x ;
if ( n % 2 == 0 )
result = power( x , n/ 2 ) * power( x , n / 2 );
else
result = power( x , (n+ 1 ) / 2 ) * power( x , (n- 1 ) / 2 );
return result;}
int main()
{
int x = 5 ;
int n = 3 ;
printf ( "power( %d , %d ) = %d \n" , x , n, power( x , n));
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值