分治算法
算法概念
分治算法的基本思想是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题相互独立且与原问题性质相同。求出子问题的解,就可得到原问题的解。即一种分目标完成程序算法,简单问题可用二分法完成。
算法步骤
- 分解,将要解决的问题划分成若干规模较小的同类问题;
- 求解,当子问题划分得足够小时,用较简单的方法解决;
- 合并,按原问题的要求,将子问题的解逐层合并构成原问题的解。
适用条件
1、该问题的规模缩小到一定的程度就可以容易地解决;
2、该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
3、利用该问题分解出的子问题的解可以合并为该问题的解;
4、该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
(上述的第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;第二条特征是应用分治法的前提,它也是大多数问题可以满足的,此特征反映了递归思想的应用;
第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,
如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑贪心法或动态规划法。
第四条特征涉及到分治法的效率,如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。
)
示例
求x的n次幂
复杂度为 O(lgn) 的分治
算法
#include "stdio.h"
#include "stdlib.h"
int
power(
int
x
,
int
n){
int
result;
if
(n ==
1
)
return
x
;
if
( n %
2
==
0
)
result = power(
x
, n/
2
) * power(
x
, n /
2
);
else
result = power(
x
, (n+
1
) /
2
) * power(
x
, (n-
1
) /
2
);
return
result;}
int
main()
{
int
x
=
5
;
int
n =
3
;
printf
(
"power(
%d
,
%d
) =
%d
\n"
,
x
, n, power(
x
, n));
}