算法思想之分治算法

本文介绍了分治算法的基本概念和适用条件,并通过实例详细解析了如何使用分治法解决问题。讨论了在寻找最大和最小数的问题中,分治算法的应用,以及不同求解策略的比较,包括二分搜索技术。同时,提供了分治算法的模板代码和递归实现。最后,总结了分治算法在解决有序表搜索问题中的效率和时间复杂度。
摘要由CSDN通过智能技术生成

14天阅读挑战赛
努力是为了不平庸~
算法学习有些时候是枯燥的,这一次,让我们先人一步,趣学算法!欢迎记录下你的那些努力时刻(算法学习知识点/算法题解/遇到的算法bug/等等),在分享的同时加深对于算法的理解,同时吸收他人的奇思妙想,一起见证技术er的成长~

算法知识点

分治算法
分治算法——将一个复杂的问题分解成若干个规模较小、相互独立,但类型相同的子问题求解;然后再将各子问题的解组合成原始问题的一个完整答案,这样的问题求解策略就叫分治法。

算法题目来源

(1)在互不相同的n个数{x1, x2,…, xn}中找出最大和最小的数。
(2)二分搜索技术;

算法题目描述

在互不相同的n个数{x1, x2,…, xn}中找出最大和最小的数。

做题思路

分治算法总体思想。将要求解的较大规模的问题分割成k个更小规模的子问题,对这k个子问题分别求解。如果子问题的规模仍然不够小,则再划分为k个子问题。
如此递归的进行下去,直到问题规模足够小,很容易求出其解为止,对这k个子问题分别求解。将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解。将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解。分治法的适用条件
分治法所能解决的问题一般具有以下几个特征:
.该问题的规模缩小到一定的程度就可以容易地解决;
.该问题可以分解为若干个规模较小的相同问题;
.利用该问题分解出的子问题的解可以合并为该问题的解;
.该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。
递归的概念

模板代码

分治法算法框架
SolutionType DandC(ProblemType P)
{
ProblemType P1,P2,…,Pk;
if (Small§) return S§; //解决小规模的问题
else {
Divide(P,P1,P2,…,Pk); //将问题分解成子问题P1,P2,…,Pk
Return Combine(DandC(P1),DandC(P2),…,DandC(Pk));
//递归的解各子问题,并将各子问题的解合并为原问题的解
}
}
SolutionTypeDandC(intleft,intright)
{if (Small(left,right)) return S(left,right);//解决小规模的问题
else {
intm=Divide(left,right);
//以m为界,将问题分解成两个子问题
Return Combine(DandC(left,m),DandC(m+1,right));
//分别递归求解子问题,并将子问题的解合并为原问题的解
}
}

做题过程中遇到的bug及解决方案

方法一:分别求最大值和最小值
分别需要n-1次和n-2次元素间的比较,共2n-3次。
方法二:同时求最大元和最小元(程序5-4)

if (n==0) return;
max=min=l[0];
for (int i=1;i<n;i++){
   
if (l[i]>max) max=l[i]; 
if 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度学习从入门到放弃

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值