1013 三的幂的和

1013 3的幂的和

基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 收藏 关注
求:3^0 + 3^1 +…+ 3^(N) mod 1000000007
Input
输入一个数N(0 <= N <= 10^9)
Output
输出:计算结果
Input示例
3
Output示例
40

题解:

这里直接用等比数列求和公式会WA。原因日后再来研究。
相关文章:http://www.cnblogs.com/Tuesdayzz/p/5758670.html
费马小定理:
在p是素数的情况下,对任意整数x都有xp≡x(mod)p。
如果x无法被p整除,则有xp−1≡1(modp)。
可以在p为素数的情况下求出一个数的逆元,x∗xp−2≡1(modp),xp−2即为逆元。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const LL mod = 1000000007;
LL mod_pow(LL x,LL n)
{
    LL res=1;
    while(n>0)
    {
        if(n&1)
        {
           res = res*x%mod;
        }
        x = x*x%mod;
        n>>=1;
    }
    return res;
}
int main()
{
    LL n,ans;
    cin>>n;
    n++;
    ans = (mod_pow(3,n)-1)*500000004 % mod;
    cout<<ans<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值