1013 三的幂的和

1013 3的幂的和

基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 收藏 关注
求:3^0 + 3^1 +…+ 3^(N) mod 1000000007
Input
输入一个数N(0 <= N <= 10^9)
Output
输出:计算结果
Input示例
3
Output示例
40

题解:

这里直接用等比数列求和公式会WA。原因日后再来研究。
相关文章:http://www.cnblogs.com/Tuesdayzz/p/5758670.html
费马小定理:
在p是素数的情况下,对任意整数x都有xp≡x(mod)p。
如果x无法被p整除,则有xp−1≡1(modp)。
可以在p为素数的情况下求出一个数的逆元,x∗xp−2≡1(modp),xp−2即为逆元。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const LL mod = 1000000007;
LL mod_pow(LL x,LL n)
{
    LL res=1;
    while(n>0)
    {
        if(n&1)
        {
           res = res*x%mod;
        }
        x = x*x%mod;
        n>>=1;
    }
    return res;
}
int main()
{
    LL n,ans;
    cin>>n;
    n++;
    ans = (mod_pow(3,n)-1)*500000004 % mod;
    cout<<ans<<endl;
    return 0;
}
起源是科学或数学中使用的词汇,它表示某个概念或现象的起源或来源。在这个问题中,我们可以理解为“origin”是指一种数学函数。 函数是一类数学函数,其表达式为f(x) = ax^b,其中ab是常数。函数拟合是指使用函数来逼近实际数据或现象的变化规律。通过调整参数ab的值,可以使函数与数据点之间的差异最小化,从而获得一个较好的拟合结果。 斜率是指在数学中表示曲线的斜率或倾斜程度的概念。对于函数,斜率可以通过函数的导数来计算。具体而言,在f(x) = ax^b中,函数的导数为f&#39;(x) = abx^(b-1)。其中,斜率的值与参数b有关,可以通过改变参数b来调整函数的斜率。 角形是数学几何中的一个基本概念,表示由条边个角组成的平面图形。在数学中,角形具有很多属性特征,例如个内角的180度等。与函数拟合斜率相关的角形属性之一是直角角形中的斜边长度与两条直角边长度的关系。根据勾股定理,在一个直角角形中,斜边的长度等于两条直角边长度的平方的平方根。这与函数中指数为2的情况相吻合,因为函数的图像正好呈现出这种关系。 因此,可以说函数拟合斜率与角形之间存在某种关系,特别是在直角角形中。函数的斜率可以用于描述直角角形中斜边两条直角边之间的关系,而函数拟合则可以用于逼近一些与角形相关的数据或现象。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值