基于ADMM算法的多微网协同优化调度 matlab➕cplex

基于ADMM算法的多微网协同优化调度 matlab➕cplex

该模型为三微网电能交互共享模型,以运行成本和环境成本为目标,考虑负荷需求响应(可削减负荷和可转移负荷)、储能约束、风电约束和功率平衡约束等,利用ADMM算法进行迭代求解,实现联盟群效益的最大化
主要内容:为了实现微网间的电能交易以及能量共享,采用ADMM方法,实现了微网之间的电能交易与协同优化,方法为分布式算法,有效的保护了各个微网的信息,避免了集中优化的大量信息索取。
参考文档:
1.高松,何俊,杨松坤,肖白.基于交替方向乘子法的多微电网能量共享方法研究[J].电网与清洁能源
2.邝凯旋,张赟宁.基于ADMM算法的微电网多目标优化调度[J].电力科学与工程

在这里插入图片描述
基于 ADMM(Alternating Direction Method of Multipliers)算法 的多微网协同优化调度 MATLAB 实现。该代码适用于多个微电网之间的协同优化调度问题,例如能源管理、成本最小化等。


程序说明

  1. 问题背景

    • 多微网系统中,每个微网需要优化自身的运行成本,同时满足整体系统的约束条件。
    • 通过 ADMM 算法实现分布式优化,避免集中式计算的通信瓶颈。
  2. ADMM 算法简介

    • ADMM 是一种分布式优化方法,将全局优化问题分解为多个子问题。
    • 每个子问题由一个微网独立求解,通过引入辅助变量和拉格朗日乘子实现全局协调。
  3. 目标

    • 最小化总运行成本,包括发电成本、购电成本等。
    • 满足功率平衡、容量限制等约束。
  4. 适用场景

    • 微电网群的能量管理。
    • 可再生能源的协同调度。

在这里插入图片描述

MATLAB 代码

% 基于 ADMM 的多微网协同优化调度
clc;
clear;

%% 参数定义
numMicrogrids = 3; % 微网数量
maxIter = 100; % 最大迭代次数
rho = 1; % ADMM 正则化参数
tol = 1e-4; % 收敛容差

% 各微网的本地参数
P_min = [0, 0, 0]; % 发电下限 (kW)
P_max = [100, 150, 120]; % 发电上限 (kW)
a = [0.1, 0.12, 0.15]; % 成本系数
b = [10, 12, 15]; % 成本系数
c = [5, 6, 7]; % 成本系数

% 全局需求
totalDemand = 200; % 总需求 (kW)

% 初始化变量
P_local = zeros(numMicrogrids, 1); % 各微网的发电量
lambda = zeros(numMicrogrids, 1); % 拉格朗日乘子
z = zeros(numMicrogrids, 1); % 辅助变量

%% ADMM 主循环
for iter = 1:maxIter
    % 更新本地变量 P_local (x-update)
    for i = 1:numMicrogrids
        fun = @(P) a(i) * P^2 + b(i) * P + c(i) + lambda(i) * P + (rho / 2) * (P - z(i))^2;
        options = optimoptions('fmincon', 'Display', 'off');
        P_local(i) = fmincon(fun, P_local(i), [], [], [], [], P_min(i), P_max(i), [], options);
    end
    
    % 更新辅助变量 z (z-update)
    z_prev = z;
    z = (sum(P_local) + sum(lambda) / rho) / numMicrogrids;
    
    % 更新拉格朗日乘子 lambda (dual update)
    lambda = lambda + rho * (P_local - z);
    
    % 检查收敛条件
    primal_residual = norm(P_local - z, inf);
    dual_residual = norm(rho * (z - z_prev), inf);
    if primal_residual < tol && dual_residual < tol
        fprintf('ADMM 收敛,迭代次数: %d\n', iter);
        break;
    end
end

%% 输出结果
disp('各微网的发电量 (kW):');
disp(P_local);
disp('总发电量 (kW):');
disp(sum(P_local));
disp('总需求 (kW):');
disp(totalDemand);

%% 绘图
figure;
bar(P_local, 'FaceColor', [0.2, 0.6, 0.8]);
xlabel('微网编号');
ylabel('发电量 (kW)');
title('各微网的发电量');
grid on;

在这里插入图片描述

代码说明

  1. 参数定义

    • 定义了每个微网的成本函数参数(a, b, c)、发电上下限(P_min, P_max)以及总需求(totalDemand)。
  2. ADMM 迭代步骤

    • x-update:每个微网独立求解其本地优化问题,使用 fmincon 求解二次规划。
    • z-update:更新辅助变量 z,表示全局平均值。
    • dual update:更新拉格朗日乘子 lambda,用于协调微网之间的约束。
  3. 收敛条件

    • 检查原始残差(primal_residual)和对偶残差(dual_residual)是否小于设定的容差。
  4. 输出与可视化

    • 输出各微网的发电量和总发电量。
    • 绘制各微网发电量的柱状图。

示例输出

运行代码后,将显示如下内容:

  1. 各微网的发电量及其总和。
  2. 总发电量与总需求的对比。
  3. 各微网发电量的柱状图。

注意事项

  1. 扩展性

    • 可以加入更多约束(如储能设备、可再生能源出力限制)。
    • 支持多时段优化(动态调度)。
  2. 参数调整

    • 调整正则化参数 rho 和收敛容差 tol 以优化性能。
  3. 实际应用

    • 替换示例数据为实际微网数据(如光伏发电、负荷需求等)。
    • 应用于多微网协同调度的实际场景。
要编写一个MATLAB程序来实现基于集群划分的配电网时间尺度分布式有功-无功协优化方法(使用SADMM算法),并调用CPLEX求解器,你需要按照以下步骤进行: ### 1. 设置环境和初始化参数 首先,确保你已经安装了MATLABCPLEX,并配置好了YALMIP工具箱用于调用CPLEX求解器。 ```matlab % 初始化环境 clear all; clc; % 添加YALMIP路径 addpath('path_to_yalmip'); % 设置CPLEX选项 cplexopt = cplexoptimset('lpmethod', 'dual'); ``` ### 2. 定义系统参数和输入数据 定义IEEE33节点系统的参数和其他必要的输入数据,例如负荷预测值、DG输出预测值等。 ```matlab % 定义IEEE33节点系统参数 num_nodes = 33; num_lines = 32; line_data = ... % 线路参数矩阵 node_data = ... % 节点参数矩阵 pv_data = ... % 光伏发电系统数据 mt_data = ... % 型燃气轮机数据 ess_data = ... % 储能系统数据 svc_data = ... % SVC数据 cb_data = ... % 电容器组数据 % 加载日前和日内预测数据 load('forecast_data.mat'); % 包含pv_forecast, load_forecast ``` ### 3. 实现日前调度模型 构建日前调度模型,包括目标函数和约束条件。 ```matlab function [day_ahead_results] = dayAheadOptimization(pv_data, load_data, line_data, node_data, mt_data, ess_data, svc_data, cb_data) % 创建优化变量 var_buy_power = sdpvar(num_timeslots, 1); var_gen_power = sdpvar(num_timeslots, num_gens); var_storage_charge = sdpvar(num_timeslots, num_storages); var_storage_discharge = sdpvar(num_timeslots, num_storages); % 定义目标函数 objective = sum(buy_cost .* var_buy_power + ... gen_cost .* var_gen_power + ... storage_cost .* (var_storage_charge + var_storage_discharge)); % 添加约束条件 constraints = []; for t = 1:num_timeslots constraints = [constraints, ... sum(var_gen_power(t,:)) + var_storage_discharge(t,:) - var_storage_charge(t,:) == load_data(t)]; constraints = [constraints, ... var_buy_power(t) <= max_buy_power]; constraints = [constraints, ... var_gen_power(t,:) >= min_gen_power & var_gen_power(t,:) <= max_gen_power]; % Add more constraints here... end % 使用CPLEX求解 options = sdpsettings('solver','cplex','verbose',0); optimize(constraints, objective, options); if checkfeasibility(constraints) day_ahead_results.buy_power = value(var_buy_power); day_ahead_results.gen_power = value(var_gen_power); day_ahead_results.storage_charge = value(var_storage_charge); day_ahead_results.storage_discharge = value(var_storage_discharge); else error('Day-ahead optimization failed.'); end end ``` ### 4. 配电网集群划分 根据日前调度结果进行配电网集群划分。 ```matlab function [clusters] = divideIntoClusters(day_ahead_results, line_data, node_data, pv_data, svc_data, cb_data) % Define clustering criteria such as module degree and reactive reserve index % Use genetic algorithm or other suitable methods for clustering % ... % Example output clusters = struct(); clusters.cluster1.nodes = [1, 2, 3]; % Nodes in first cluster clusters.cluster2.nodes = [4, 5, 6]; % Nodes in second cluster % Add more clusters... end ``` ### 5. 实现日内分布式调度模型 基于集群划分的结果,构建日内分布式调度模型。 ```matlab function [intraday_results] = intraDayOptimization(clusters, day_ahead_results, pv_intraday_forecast, load_intraday_forecast) % Initialize variables for each cluster for c = 1:length(clusters) cluster_vars(c).power_flow = sdpvar(length(clusters(c).nodes), length(clusters(c).nodes)); cluster_vars(c).reactive_power = sdpvar(length(clusters(c).nodes), 1); % Initialize other variables... end % Build SADMM-based optimization model for each cluster for iter = 1:max_iterations for c = 1:length(clusters) % Construct local objective function and constraints for this iteration % ... % Solve locally using CPLEX optimize(local_constraints, local_objective, sdpsettings('solver','cplex')); % Update dual variables and consensus terms % ... end % Check convergence conditions if converged break; end end % Collect final results from all clusters intraday_results = collectResults(cluster_vars); end ``` ### 6. 执行完整流程 最后,组合这些功能在一个主脚本中执行整个流程。 ```matlab % 主脚本 day_ahead_results = dayAheadOptimization(pv_data, load_data, line_data, node_data, mt_data, ess_data, svc_data, cb_data); clusters = divideIntoClusters(day_ahead_results, line_data, node_data, pv_data, svc_data, cb_data); intraday_results = intraDayOptimization(clusters, day_ahead_results, pv_intraday_forecast, load_intraday_forecast); disp('Day-ahead and Intra-day Optimization Complete!'); ``` 请注意这只是一个简化版框架示例,具体细节还需要根据实际情况调整和完善。特别是关于SADMM的具体实现部分,可能涉及到复杂的数学公式推导和矩阵运算。建议详细阅读相关文献资料以确保正确实现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值