深度学习 pytorch 困惑度计算方法

以下是我 编写的 计算 困惑度 PPL的 代码
根据困惑度的定义:(其定义是其他形式的定义非书本上的定义,实验常用的就是这种形式)
来源解释:https://stackoverflow.com/questions/61988776/how-to-calculate-perplexity-for-a-language-model-using-pytorch

P P L = e c r o s s _ e n t r o p y PPL=e^{cross\_entropy} PPL=ecross_entropy
其中 c r o s s _ e n t r o p y cross\_entropy cross_entropy 就是交叉熵损失 因此只需要对 交叉熵损失求exp()
注意:F.cross_entropy的参数 reduction必须要为 mean 即默认 就为 Mean

from torch import Tensor
import numpy as np
import torch.nn.functional as F


def perplexity(outputs: Tensor, targets: Tensor, config=None):
    """
    计算语言模型困惑度
    :param outputs: [batch_size,seq_len,vocab_size]
    :param targets: [batch_size,seq_len]
    :param config:  配置文件 default:None
    :return: 困惑度数值
    """
    ce = F.cross_entropy(outputs.view(-1, outputs.size(-1)), targets.view(-1),
                         ignore_index=config.data.pad_id if config is not None else None)

    return torch.exp(ce)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一如年少模样丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值