洛谷4556:雨天的尾巴(线段树合并)

题面
路径(u,v)修改
根据套路可以变成u、v处+1,lca(u,v)处-1
单点查询变为子树查询

然后搜题解
发现可以每个点开以颜色为权值 的权值线段树
统计子树信息就是线段树合并
根据某种理论
叶子结点个数一定时
复杂度就是一个log的
(刚学的)

#include <iostream>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <ctime>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <map>

using namespace std;
#define mmst(a, b) memset(a, b, sizeof(a))
#define mmcp(a, b) memcpy(a, b, sizeof(b))

typedef long long LL;

const int N=200200,oo=1e9;

void read(int &hy)
{
    hy=0;
    char cc=getchar();
    while(cc<'0'||cc>'9')
    cc=getchar();
    while(cc>='0'&&cc<='9')
    {
        hy=(hy<<3)+(hy<<1)+cc-'0';
        cc=getchar();
    }
}

int n,m,ans[N];
int head[N],nex[N],to[N],cnt;
int fa[N][20],tim[N],times;

int cur,rm[N];
map<int ,int> mp;

struct yy
{
    int l,r,x;
}t[10001000];

int root[N];

void add(int u,int v)
{
    to[++cnt]=v;
    nex[cnt]=head[u];
    head[u]=cnt;
}

void dfs(int x)
{
    tim[x]=++times;
    for(int h=head[x];h;h=nex[h])
    if(to[h]!=fa[x][0])
    {
        fa[to[h]][0]=x;
        dfs(to[h]);
    }
}

int lca(int x,int y)
{
    if(x==y)
    return x;
    if(tim[x]>tim[y])
    swap(x,y);
    for(int j=19;j>=0;j--)
    if(tim[fa[y][j]]>tim[x])
    y=fa[y][j];
    return fa[y][0];
}

void update(int &ro,int l,int r,int p,int q)
{
    if(!ro)
    ro=++cnt;
    if(l==r)
    {
        t[ro].x+=q;
        return;
    }
    int mid=(l+r)/2;
    if(p<=mid)
    update(t[ro].l,l,mid,p,q);
    else
    update(t[ro].r,mid+1,r,p,q);
    t[ro].x=max(t[t[ro].l].x,t[t[ro].r].x);
}

int find(int ro,int l,int r)
{
    if(!t[ro].x)
    return 0;
    if(l==r)
    return l;
    int mid=(l+r)/2;
    if(t[t[ro].l].x==t[ro].x)
    return find(t[ro].l,l,mid);
    else
    return find(t[ro].r,mid+1,r);
}

void unite(int a,int b,int l,int r)
{
    if(l==r)
    {
        t[a].x+=t[b].x;
        return;
    }
    int mid=(l+r)/2;

    if(t[b].l)
    if(!t[a].l)
    t[a].l=t[b].l;
    else
    unite(t[a].l,t[b].l,l,mid);

    if(t[b].r)
    if(!t[a].r)
    t[a].r=t[b].r;
    else
    unite(t[a].r,t[b].r,mid+1,r);

    t[a].x=max(t[t[a].l].x,t[t[a].r].x);
}

void work(int x)
{
    for(int h=head[x];h;h=nex[h])
    if(to[h]!=fa[x][0])
    {
        work(to[h]);
        unite(root[x],root[to[h]],1,100000);
    }
    ans[x]=find(root[x],1,100000);
}

int main()
{   
    cin>>n>>m;

    for(int i=1;i<n;i++)
    {
        int u,v;
        read(u);
        read(v);
        add(u,v);
        add(v,u);
    }

    fa[1][0]=1;
    dfs(1);

    for(int j=1;j<=19;j++)
    for(int i=1;i<=n;i++)
    fa[i][j]=fa[fa[i][j-1]][j-1];

    cnt=n;
    for(int i=1;i<=n;i++)
    root[i]=i;
    while(m--)
    {
        int u,v,w;
        read(u);
        read(v);
        read(w);

    /*  if(!mp.count(w))
        {
            mp[w]=++cur;
            rm[cur]=w;
        }
        w=mp[w];*/

        int lc=lca(u,v);
        update(root[u],1,100000,w,1);
        update(root[v],1,100000,w,1);
        update(root[lc],1,100000,w,-1);
        if(lc!=1)
        update(root[fa[lc][0]],1,100000,w,-1);
    }

    work(1);

    for(int i=1;i<=n;i++)
    printf("%d\n",ans[i]);

    return 0;
}
阅读更多
版权声明:虽说本文就是在吹B,但转载也要标明出处哦 https://blog.csdn.net/q582116859/article/details/80356022
个人分类: 线段树
上一篇洛谷4602:混合果汁(可持久化线段树+二分)
下一篇洛谷P4491:[HAOI2018]染色(容斥+ntt)
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭