poj 1061 青蛙的约会 数论扩展GCD(数论)

青蛙的约会
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 98385 Accepted: 18668
Description

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。
Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"
Sample Input

1 2 3 4 5
Sample Output

4

解题思路:
gcd与extgcd就不证了,<<挑战程序设计竞赛>>上证的很好。
说一下应用吧

gcd(a,b)为求a,b,的最大公约数

extgcd为求ax+by=gcd(a,b)的解,注意c必须为gcd(a,b)。
通解为
x= x0 + b/Gcd(a, b) * t
y = y0 - a/Gcd(a, b) * t(其中t为任意整数)
证明见百度百科

如何求ax+by=c的解呢

首先如果c/gcd(a,b)!=0的话是没有整数解的。

我们可以先用extgcd求出a/gcd(a,b)x+b/gcd(a,b)y=1的解x1,y1,
即a
x1/gcd(a,b)+b
y1/gcd(a,b)=1。
再在方程两边同时乘以c,得到
a(x1c/gcd(a,b))+b(y1c/gcd(a,b))=c
所以ax+by=c的解为x1c/gcd(a,b)与y1c/gcd(a,b)。

设x2=x1c/gcd(a,b)。
y2=y1
c/gcd(a,b)。

通解为
x= x2 + b/Gcd(a, b) * t
y = y2 - a/Gcd(a, b) * t(其中t为任意整数)

开始说题:
令k1为跳的次数,k2为超过的圈数。

由题意知(x+mk1)-(y+nk1)=k2*l;

化简得(n-m)k1+lk2=x-y;
令a=n-m;
b=l;
c=x-y;
即得到ak1+bk2=c可用扩展gcd解题了

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
using namespace std;
long long gcd(long long a,long long b);
long long int extgcd(long long int a,long long int b,long long int &x,long long int &y);
int main()
{
    //freopen("in.txt","r",stdin);
    long long x,y,m,n,l,k1,k2;
    cin>>x>>y>>m>>n>>l;
    long long a=n-m;
    long long b=l;
    long long c=x-y;
    long long r=gcd(a,b);
    if(c%r!=0) cout<<"Impossible"<<endl;
    else
    {
        a=a/r;
        b=b/r;
        c=c/r;
        extgcd(a,b,k1,k2);
        k1=c*k1-c*k1/b*b; //提示通解为k1=c*k1+b*t.注1
        if(k1<0)
         {
		     if(k1+b>0) k1+=b;
	         else if(k1-b>0) k1-=b;
         }
        cout<<k1<<endl;
    }
    return 0;
}
long long extgcd(long long int a,long long int b,long long int &x,long long int &y)
{
    long long int d=a;
    if(b!=0)
    {
        d=extgcd(b,a%b,y,x);
        y-=(a/b)*x;
    }
    else
    {
        x=1;
        y=0;
    }
    return d;
}
long long gcd(long long a,long long b)
{
    if(b==0) return a;
    return gcd(b,a%b);
}

因为通解为k1=ck1+bt(t为任意整数),又由题知我们要求的为k1大于等于0的最小值,但是因为n-m与x-y的正负不可知,所以我们不清楚c与k1与b的正负,所以用ck1-ck1/b*b求出来的只可能是最接近0的那个正值或负值,当时正值的时候就直接输出了,当是负值的时候根据b的正负加上或者减去b。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值