Linux 用户和 OSX 用户一定对软件包管理器不会陌生。
通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件源下载软件包,同时自动解决所有的依赖(即下载安装这个软件包的安装所依赖的其它软件包),完成所有的配置。
Debian/Ubuntu 使用的 apt-get,Fedora/CentOS 使用的 yum,以及 OSX 下可用的 homebrew 都是优秀的软件包管理器。
你决定设计你自己的软件包管理器。
不可避免地,你要解决软件包之间的依赖问题。
如果软件包 A 依赖软件包 B,那么安装软件包 A以前,必须先安装软件包 B。
同时,如果想要卸载软件包 B,则必须卸载软件包 A。
现在你已经获得了所有的软件包之间的依赖关系。
而且,由于你之前的工作,除 0 号软件包以外,在你的管理器当中的软件包都会依赖一个且仅一个软件包,而 0号软件包不依赖任何一个软件包。
依赖关系不存在环(若有 m(m≥2) 个软件包 A1,A2,A3,…,Am,其中 A1 依赖 A2,A2 依赖 A3,A3 依赖 A4,……,Am−1 依赖 Am,而 Am 依赖 A1,则称这 m个软件包的依赖关系构成环),当然也不会有一个软件包依赖自己。
现在你要为你的软件包管理器写一个依赖解决程序。
根据反馈,用户希望在安装和卸载某个软件包时,快速地知道这个操作实际上会改变多少个软件包的安装状态(即安装操作会安装多少个未安装的软件包,或卸载操作会卸载多少个已安装的软件包),你的任务就是实现这个部分。
注意,安装一个已安装的软件包,或卸载一个未安装的软件包,都不会改变任何软件包的安装状态,即在此情况下,改变安装状态的软件包数为 0。
输入格式
输入文件的第 1 行包含 1 个正整数 n,表示软件包的总数。软件包从 0 开始编号。
随后一行包含 n−1 个整数,相邻整数之间用单个空格隔开,分别表示 1,2,3,…,n−2,n−1 号软件包依赖的软件包的编号。
接下来一行包含 1 个正整数 q,表示询问的总数。
之后 q 行,每行 1 个询问。询问分为两种:
install x
:表示安装软件包 xuninstall x
:表示卸载软件包 x你需要维护每个软件包的安装状态,一开始所有的软件包都处于未安装状态。
对于每个操作,你需要输出这步操作会改变多少个软件包的安装状态,随后应用这个操作(即改变你维护的安装状态)。
输出格式
输出文件包括 q 行。
输出文件的第 i 行输出 1 个整数,为第 i步操作中改变安装状态的软件包数。
数据范围
输入样例1:
7 0 0 0 1 1 5 5 install 5 install 6 uninstall 1 install 4 uninstall 0
输出样例1:
3 1 3 2 3
输入样例2:
10 0 1 2 1 3 0 0 3 2 10 install 0 install 3 uninstall 2 install 7 install 5 install 9 uninstall 9 install 4 install 1 install 9
输出样例2
1 3 2 1 3 1 1 1 0 1
难度:困难 时/空限制:1s / 64MB 总通过数:878 总尝试数:1427 来源:NOI2015 算法标签
挑战模式
#include <iostream>
#include <cstring>
using namespace std;
constexpr int N=1e5+7;
int h[N],e[N],ne[N],idx;
int dep[N],sz[N],top[N],fa[N],son[N];
int id[N],cnt;
struct node{
int l,r;
int add,sum;
}tr[N*4];
void add(int a,int b){
e[idx]=b;
ne[idx]=h[a];
h[a]=idx++;
}
void dfs1(int u,int depth){
dep[u]=depth,sz[u]=1;
for(int i=h[u];i!=-1;i=ne[i]){
int j=e[i];
dfs1(j,depth+1);
sz[u]+=sz[j];
if(sz[son[u]]<sz[j]) son[u]=j;
}
}
void dfs(int u,int t){
id[u]=++cnt,top[u]=t;
if (!son[u]) return;
dfs(son[u], t);
for (int i = h[u]; ~i; i = ne[i])
{
int j = e[i];
if (j == fa[u] || j == son[u]) continue;
dfs(j, j);
}
}
void pushup(int u){
tr[u].sum=tr[u<<1].sum+tr[u<<1|1].sum;
}
void pushdown(int u){
auto &root=tr[u],&left=tr[u<<1],&right=tr[u<<1|1];
if(root.add!=-1){
left.add=root.add;
left.sum=root.add*(left.r-left.l+1);
right.add=root.add;
right.sum=root.add*(right.r-right.l+1);
root.add=-1;
}
}
void build(int u,int l,int r){
tr[u]={l,r,-1,0};
if(l==r)return;
int mid=l+r>>1;
build(u<<1,l,mid);
build(u<<1|1,mid+1,r);
pushup(u);
}
void update(int u,int l,int r,int k){
if (l <= tr[u].l && r >= tr[u].r)
{
tr[u].add = k;
tr[u].sum = k * (tr[u].r - tr[u].l + 1);
return;
}
pushdown(u);
int mid = tr[u].l + tr[u].r >> 1;
if (l <= mid) update(u << 1, l, r, k);
if (r > mid) update(u << 1 | 1, l, r, k);
pushup(u);
}
void update_tree(int u,int k){
update(1,id[u],id[u]+sz[u]-1,k);
}
void update_path(int u,int v,int k){
while (top[u] != top[v]) //向上爬找到相同重链
{
if (dep[top[u]] < dep[top[v]]) swap(u, v);
update(1, id[top[u]], id[u], k); //dfs序原因,上面节点的id必然小于下面节点的id
u = fa[top[u]];
}
if (dep[u] < dep[v]) swap(u, v);
update(1, id[v], id[u], k);
}
int main(){
int n;
scanf("%d",&n);
memset(h,-1,sizeof h);
for(int i=2;i<=n;i++){
int p;
scanf("%d",&p);
p++;
add(p,i);
fa[i]=p;
}
dfs1(1,1);
dfs(1,1);
build(1, 1, n);
int m;
scanf("%d",&m);
while(m--){
char op[20];
int x;
scanf("%s%d",op,&x);
x++;
if(!strcmp(op,"install")){
int t=tr[1].sum;
update_path(1,x,1);
printf("%d\n",tr[1].sum-t);
}
else{
int t=tr[1].sum;
update_tree(x,0);
printf("%d\n",t-tr[1].sum);
}
}
}