描述:
语音情感识别通常指机器从语音中自动识别人类情感和情感相关状态的过程。
这一过程最主要的两大步骤是特征提取与构建分类器。在特征提取步骤中,最常用的有能量(energy),音高(pitch),梅尔频率倒谱系数(MFCC)等语音特征。语音情感识别发展至今,特征提取依然尚未成熟,目前最为普及的特征集有INTERSPEECH 2009 Emotion Challenge和 INTERSPEECH 2013 Paralinguistics Challenge中主办方选取的特征集以及语音信号处理工具openSMILE中的特征集等。
构建分类器步骤则是机器学习的环节。过去常用的分类器有高斯混合模型(GMM),隐马尔可夫模型(HMM),支持向量机(SVM)等经典的机器学习方法。得益于神经网络的发展,长短时记忆模型(LSTM),注意力机制等方法取代了经典方法成为了主流。近年,端到端(end-to-end)的方法开始被应用,简化甚至省略了特征提取的步骤。
基本的语音情感识别流程如下图所示:
语音信号首先通过语音处理系统被转化为可读的多种物理特征(音高,能量等),每一段语音信号都有其独特的特征。这些特征中会有一部分经过人为选择,被系统提取,输入到预先训练好的分类器中进行判别,输出情感状态的结果。
以下的例子可以帮助理解什么是语音情感识别