陈同学_alex
码龄8年
关注
提问 私信
  • 博客:555,302
    社区:410
    555,712
    总访问量
  • 159
    原创
  • 2,046,970
    排名
  • 11,423
    粉丝
  • 113
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 目前就职: 某公司
  • 加入CSDN时间: 2017-01-22
博客简介:

陈建驱的博客

博客描述:
技术死宅,个人博客:www.chenjianqu.com
查看详细资料
个人成就
  • 获得794次点赞
  • 内容获得200次评论
  • 获得6,513次收藏
  • 代码片获得2,801次分享
创作历程
  • 3篇
    2023年
  • 13篇
    2022年
  • 50篇
    2021年
  • 49篇
    2020年
  • 43篇
    2019年
  • 1篇
    2018年
成就勋章
TA的专栏
  • 自动驾驶感知
    6篇
  • 自动驾驶定位
    10篇
  • 机器人
    45篇
  • 自然语言处理
    13篇
  • 编程随笔
    22篇
  • 嵌入式
    5篇
  • 计算机视觉
    75篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉深度学习pytorch
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

176人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

MVSFormer论文阅读和代码分析

特征表示学习是实现基于学习的多视点立体视觉的关键。作为基于学习的MVS的通用特征提取器,普通特征金字塔网络(FPNs)在反射和无纹理区域存在特征表示不理想的问题,限制了MVS的泛化。即使FPNs与预训练的卷积神经网络(CNN)一起工作,也无法解决这些问题。另一方面,视觉Transformers(ViTs)在许多2D视觉任务中取得了显著的成功。那么,ViTs是否能够促进MVS中的特征学习呢?本文提出一种预训练的ViT增强MVS网络,称为MVSFormer,它可以从ViT中受益于信息先验学习更可靠的特征表示。
原创
发布博客 2023.10.22 ·
1074 阅读 ·
3 点赞 ·
0 评论 ·
8 收藏

深度估计的地面假设

则图像中每个像素对应的3D点,等于从相机光心发射的、通过该像素的射线与地面的交点。求解该交点,并将其投影到相机坐标系,即可得到每个像素距离地面的深度。平面外某条射线的起点。假设已知相机到地面的位姿。求:射线 和平面的交点。已知:空间平面上的点。
原创
发布博客 2023.09.13 ·
319 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

MVSNet,CVP-MVSNet论文阅读和代码解析

提出一种基于cost volume的神经网络,用于多视图图像的深度推断。我们证明了以一种coarse-to-fine的方式构建cost volume金字塔,而不是以固定分辨率构建cost volume,可以得到一个紧凑、轻量级的网络,并允许推断高分辨率深度图,以获得更好的重建结果。为此,首先以图像的最粗分辨率在整个深度范围内对前平行平面(fronto-parallel planes)进行均匀采样,以此为基础构建cost volume。然后,给定当前深度估计,我们在像素深度残差上迭代构建新的cost volu
原创
发布博客 2023.09.11 ·
492 阅读 ·
1 点赞 ·
1 评论 ·
4 收藏

流形上的预积分(下)

论文:IMU Preintegration on Manifold for Effificient Visual-Inertial Maximum-a-Posteriori Estimation引言接上文…考虑(31)中的预积分测量模型,由于测量噪声为零均值且为一阶高斯(35),残差 rIij≡[rΔRijT,rΔvijT,rΔpijT]T∈R9\bold{r}_{\mathcal{I}_{ij}} \equiv [ \bold{r}_{\Delta \bold{R}_{ij}}^T , \bold{r}_
原创
发布博客 2022.11.05 ·
659 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

流形上的预积分(中)

论文:IMU Preintegration on Manifold for Effificient Visual-Inertial Maximum-a-Posteriori Estimation引言接上文…从旋转噪声开始:ΔR~ij=Ri⊤RjExp⁡(δϕij)⇒Exp⁡(−δϕij)≐∏k=ij−1Exp⁡(−ΔR~k+1j⊤JrkηkgdΔt)(32)\Delta \tilde{\mathrm{R}}_{i j} =\mathrm{R}_{i}^{\top} \mathrm{R}_{j} \ope
原创
发布博客 2022.11.05 ·
729 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

流形上的预积分(上)

论文:IMU Preintegration on Manifold for Effificient Visual-Inertial Maximum-a-Posteriori Estimation引言本文提出了一个使用增量平滑(incremental smoothing)快速计算最大后验估计(MAP)的系统。第一项贡献是发展出了一种新颖的预积分理论。 预积分IMU测量的使用是在[26]中首次提出的,包括将两个关键帧之间的许多惯性测量组合成一个相对运动约束。 本文在此工作的基础上提出了一个预积分理论,该理论恰当
原创
发布博客 2022.11.05 ·
941 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

对极几何-三角测量-知识点

所谓极线约束就是说同一个点在两幅图像上的映射,已知左图映射点 ,那么右图映射点 一定在相对于 的极线上,这样可以减少待匹配的点数量。
原创
发布博客 2022.09.21 ·
1090 阅读 ·
0 点赞 ·
2 评论 ·
4 收藏

卡尔曼滤波的推导

卡尔曼滤波的详细推导过程。
原创
发布博客 2022.07.19 ·
359 阅读 ·
1 点赞 ·
2 评论 ·
1 收藏

BCH公式和李代数求导

本文记录BCH公式、李代数求导、伴随矩阵等知识点
原创
发布博客 2022.07.17 ·
2210 阅读 ·
2 点赞 ·
1 评论 ·
4 收藏

3D Dynamic Scene Graphs论文阅读

3D Dynamic Scene Graphs: Actionable Spatial Perception with Places, Objects, and HumansAntoni Rosinol, Arjun Gupta, Marcus Abate, Jingnan Shi, Luca CarloneLaboratory for Information & Decision Systems (LIDS)Massachusetts Institute of TechnologyRSS2
原创
发布博客 2022.05.22 ·
1002 阅读 ·
0 点赞 ·
1 评论 ·
9 收藏

CubeSLAM论文阅读

CubeSLAM: Monocular 3-D Object SLAMShichao Yang and Sebastian Scherer摘要In this paper, we present a method for single image three-dimensional (3-D) cuboid object detection and multiview object simultaneous localization and mapping in both static and dyn
原创
发布博客 2022.05.11 ·
1190 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

PL-VIO论文阅读

PL-VIO: Tightly-Coupled Monocular Visual–Inertial Odometry Using Point and Line FeaturesYijia He 1,2,* , Ji Zhao 3, Yue Guo 1,2, Wenhao He 1 and Kui Yuan 12018摘要To address the problem of estimating camera trajectory and to build a structural 3D map ba
原创
发布博客 2022.04.19 ·
1523 阅读 ·
2 点赞 ·
0 评论 ·
11 收藏

VDO-SLAM论文阅读

VDO-SLAM: A Visual Dynamic Object-aware SLAM SystemJun Zhang[co]1, Mina Henein[co]1, Robert Mahony1 and Viorela Ila21Australian National University, Canberra2University of Sydney, Sydney2020年摘要The scene rigidity assumption, also known as the static
原创
发布博客 2022.04.14 ·
732 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

ORB-SLAM2代码思维导图

初始化跟踪线程局部建图线程回环检测线程
原创
发布博客 2022.04.11 ·
839 阅读 ·
4 点赞 ·
0 评论 ·
13 收藏

光流估计算法RAFT的论文和代码阅读

RAFT论文和代码阅读RAFT: Recurrent All-Pairs Field Transforms for Optical FlowZachary Teed and Jia DengECCV2020 best paper摘要We introduce Recurrent All-Pairs Field Transforms (RAFT), a new deep network architecture for optical flow. RAFT extracts per-pixel fe
原创
发布博客 2022.04.08 ·
4172 阅读 ·
3 点赞 ·
1 评论 ·
40 收藏

PointNet++论文和代码阅读

PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric SpaceCharles R. Qi Li Yi Hao Su Leonidas J. GuibasStanford UniversityAbstractFew prior works study deep learning on point sets. PointNet is a pioneer in this direction. However, b
原创
发布博客 2022.04.03 ·
4285 阅读 ·
2 点赞 ·
0 评论 ·
21 收藏

Realsense的使用

获取Realsense的相关参数1.1获取Realsense的串口号rs2::context ctx;autodevs = ctx.query_devices();///获取设备列表intdevice_num = devs.size();std::cout<<"device num: "<<device_num<<std::endl;///设备数量///查看第0个设备的信息rs2::device dev = devs[0];///设备...
原创
发布博客 2021.08.21 ·
4117 阅读 ·
4 点赞 ·
4 评论 ·
69 收藏

NLP-结巴分词

结巴分词结巴分词是有国内程序员(https://github.com/fxsjy/jieba)做的一个分词工具,刚开始是Python版本的,后来由anderscui(https://github.com/anderscui/jieba.NET )移植到.Net上面。结巴分词的分词过程大致为:·前缀词典(Trie):用于存储主词典,也可以动态增删词条,这个词典可以理解为jieba所“知道”的词,或者说已登录词;·有向无环图(DAG):通过前缀词典,可以找出句子所有可能的成词结果;·最大概率
原创
发布博客 2021.08.21 ·
2325 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

聊天机器人-ChatterBot初试

聊天机器人ChatterBotChatterBot是一个基于Python的开源聊天机器人框架。ChatterBot支持中文,且可以在对话中实时改进。一个未经训练的ChatterBot实例开始时不知道如何通信。每次用户输入语句时,库都会保存他们输入的文本以及语句响应的文本。当ChatterBot收到更多输入时,它可以回复的响应数量以及与输入语句相关的每个响应的准确性都会增加。程序通过搜索与输入匹配的最接近的匹配已知语句来选择最接近的匹配响应,然后从选择对该语句的已知响应中选择...
原创
发布博客 2021.08.21 ·
1254 阅读 ·
2 点赞 ·
0 评论 ·
12 收藏

聊天机器人概述

目录<span style="color:#333333"><span style="background-color:#f5f5f5">1.前言2.机器人3.聊天机器人4.分类5.好的聊天机器人应该具备的特点6.基于模板的聊天机器人7.检索式聊天机器人8.生成式聊天机器人9.参考文献</span></span>前言 网上的资料太乱了,参考着网上的文章写了这篇关于聊天机器人的概述文章,文章的很多内容并非原...
原创
发布博客 2021.08.21 ·
2985 阅读 ·
1 点赞 ·
0 评论 ·
27 收藏
加载更多