写在前面:本博客仅为本人总结记录笔记之用,不作任何商业用途,如有侵犯,请联系本人删除,谢谢。(转载链接见末尾)
方法一:暴力解法(了解,不感兴趣的朋友可以直接跳过)
枚举所有的子区间:
使用双层循环,穷举所有的子区间;
然后再对子区间内的所有元素求和;
时间复杂度是立方级别的。
参考代码 1:
这里要注意一些边界条件:
变量 i 表示结尾的那个下标;
变量 j 表示从下标 0 依次向前走;
public class Solution {
public int maxSubArray(int[] nums) {
int len = nums.length;
int res = Integer.MIN_VALUE;
for (int i = 0; i < len; i++) {
for (int j = 0; j <= i; j++) {
int sum = sumOfSubArray(nums, j, i);
res = Math.max(res, sum);
}
}
return res;
}
private int sumOfSubArray(int[] nums, int left, int right) {
// 子区间的和
int res = 0;
for (int i = left; i <= right; i++) {
res += nums[i];
}
return res;
}
}
复杂度分析:
时间复杂度:O(N^3),这里 N 为数组的长度;
空间复杂度:O(1)。
提交以后发现「超时」,有两种情况:
程序当中写了「死循环」;
代码「正确」,复杂度较高,本解法属于这种情况。
优化:事实上,上面的代码有一些重复计算。这是因为相同前缀的区间求和,可以通过类似「状态转移」的方法得到。
例如:计算子区间 [1, 4] 的和可以在计算子区间 [1, 3] 的基础上,再加上 nums[4] 得到。
因此,只需要枚举子序的左端点,然后再扫描右端点,就可以减少一个级别的复杂度。
参考代码 2:
public class Solution {
public int maxSubArray(int[] nums) {
int len = nums.length;
int res = Integer.MIN_VALUE;
for (int i = 0; i < len; i++) {
int sum = 0;
for (int j = i; j < len; j++) {
sum += nums[j];
res = Math.max(res, sum);
}
}
return res;
}
}
复杂度分析:
时间复杂度:O(N^2)
空间复杂度:O(1)。
其实这道题是一个非常经典的动态规划问题。
该问题最早于 1977 年提出,但是直到 1984 年才被 Jay Kadane 发现了线性时间的最优解法。
方法二:动态规划(经典动态规划问题)
第 1 步:定义状态
既然一个连续子数组一定要以一个数作为结尾,那么可以将状态定义成如下:
dp[i]:表示以 nums[i] 结尾的连续子数组的最大和。
类似的状态定义还有:「力扣」第 300 题:「最长上升子序列」。
以 「什么什么结尾」这种定义方式是动态规划的无后效性理论的应用,简而言之,确定一件事情,分类讨论才好开展,一个数在子序列中是否被选择,是这个问题的隐含条件。
第 2 步:思考状态转移方程
根据状态的定义,由于 nums[i]
一定会被选取,并且 dp[i]
所表示的连续子序列与 dp[i - 1]
所表示的连续子序列(有可能)就差一个 nums[i]
。
假设数组 nums 全是正数,那么一定有 dp[i] = dp[i - 1] + nums[i]
。
在一般情况下 dp[i - 1]
有可能是负数,例如前几个数都是负数,突然来了一个正数。
于是分类讨论:
如果 dp[i - 1] >= 0
,那么可以把 nums[i]
直接接在 dp[i - 1]
表示的那个数组的后面;
如果 dp[i - 1] < 0
,那么加上前面的数反而越来越小了,于是「另起炉灶」,单独的一个 nums[i]
,就是 dp[i]
。
以上两种情况的最大值就是 dp[i]
的值,写出如下状态转移方程:
dp[i] = dp[i - 1] + nums[i] , if dp[i−1]≥0
= nums[i] ------------if dp[i−1]<0
记为「状态转移方程 1」。
状态转移方程还可以这样写,反正求的是最大值,也不用分类讨论了,就这两种情况,取最大即可,因此还可以写出状态转移方程如下:
dp[i] = max {nums[i], dp[i−1] + nums[i]}
记为「状态转移方程 2」。
动态规划的问题经常要分类讨论,这是因为动态规划的问题本来就有最优子结构的特征,即大问题的最优解通常由小问题的最优解得到,那么我们就需要通过分类讨论,得到大问题的小问题究竟是哪些。
第 3 步:思考初始值
dp[0]
根据定义,一定以 nums[0]
结尾,因此 dp[0] = nums[0]
。
第 4 步:思考输出
这里状态的定义不是题目中的问题的定义,不能直接将最后一个状态返回回去。
输出应该是把所有的 dp[0]、dp[1]、……、dp[n - 1]
都看一遍,取最大值。 同样的情况也适用于「力扣」第 300 题:「最长上升子序列」。我经常在这一步「摔跟头」,请各位也留意。
参考代码 3:根据「状态转移方程 1」
public class Solution {
public int maxSubArray(int[] nums) {
int len = nums.length;
if (len == 0) {
return 0;
}
int[] dp = new int[len];
dp[0] = nums[0];
for (int i = 1; i < len; i++) {
if (dp[i - 1] >= 0) {
dp[i] = dp[i - 1] + nums[i];
} else {
dp[i] = nums[i];
}
}
// 最后不要忘记全部看一遍求最大值
int res = dp[0];
for (int i = 1; i < len; i++) {
res = Math.max(res, dp[i]);
}
return res;
}
}
参考代码 4:根据「状态转移方程 2」
public class Solution {
public int maxSubArray(int[] nums) {
int len = nums.length;
if (len == 0) {
return 0;
}
int[] dp = new int[len];
dp[0] = nums[0];
for (int i = 1; i < len; i++) {
dp[i] = Math.max(nums[i], dp[i - 1] + nums[i]);
}
int res = dp[0];
for (int i = 1; i < len; i++) {
res = Math.max(res, dp[i]);
}
return res;
}
}
复杂度分析:
时间复杂度:O(N)
空间复杂度:O(N)
第 5 步:思考优化空间
既然当前状态只与上一个状态有关,我们可以将空间复杂度降到 O(1)。
参考代码 5:
public class Solution {
public int maxSubArray(int[] nums) {
int len = nums.length;
if (len == 0) {
return 0;
}
// 起名叫 pre 表示的意思是「上一个状态」的值
int pre = nums[0];
int res = pre;
for (int i = 1; i < len; i++) {
pre = Math.max(nums[i], pre + nums[i]);
res = Math.max(res, pre);
}
return res;
}
}
复杂度分析:
时间复杂度:O(N)
空间复杂度:O(1)
方法三:分治法
分治法的思路是这样的,其实也是分类讨论。
连续子序列的最大和主要由这三部分子区间里元素的最大和得到:
第 1 部分:子区间 [left, mid];
第 2 部分:子区间 [mid + 1, right];
第 3 部分:包含子区间 [mid , mid + 1] 的子区间,即 nums[mid] 与 nums[mid + 1] 一定会被选取。
对这三个部分求最大值即可。
说明:考虑第 3 部分跨越两个区间的连续子数组的时候,由于 nums[mid] 与 nums[mid + 1] 一定会被选取,可以从中间向两边扩散,扩散到底 选出最大值,具体请见「参考代码 6」。
参考代码 6:
public class Solution {
public int maxSubArray(int[] nums) {
int len = nums.length;
if (len == 0) {
return 0;
}
return maxSubArraySum(nums, 0, len - 1);
}
private int maxCrossingSum(int[] nums, int left, int mid, int right) {
// 一定会包含 nums[mid] 这个元素
int sum = 0;
int leftSum = Integer.MIN_VALUE;
// 左半边包含 nums[mid] 元素,最多可以到什么地方
// 走到最边界,看看最值是什么
// 计算以 mid 结尾的最大的子数组的和
for (int i = mid; i >= left; i--) {
sum += nums[i];
if (sum > leftSum) {
leftSum = sum;
}
}
sum = 0;
int rightSum = Integer.MIN_VALUE;
// 右半边不包含 nums[mid] 元素,最多可以到什么地方
// 计算以 mid+1 开始的最大的子数组的和
for (int i = mid + 1; i <= right; i++) {
sum += nums[i];
if (sum > rightSum) {
rightSum = sum;
}
}
return leftSum + rightSum;
}
private int maxSubArraySum(int[] nums, int left, int right) {
if (left == right) {
return nums[left];
}
int mid = (left + right) >>> 1;
return max3(maxSubArraySum(nums, left, mid),
maxSubArraySum(nums, mid + 1, right),
maxCrossingSum(nums, left, mid, right));
}
private int max3(int num1, int num2, int num3) {
return Math.max(num1, Math.max(num2, num3));
}
}
复杂度分析:
时间复杂度:O(N*logN),这里递归的深度是对数级别的,每一层需要遍历一遍数组(或者数组的一半、四分之一);
空间复杂度:O(logN),需要常数个变量用于选取最大值,需要使用的空间取决于递归栈的深度。
参考资料:
https://www.ge(去掉中文字和括号,防和谐)eksforgeeks.org/maximum-subarray-sum-using-divide-and-conquer-algorithm/
作者:liweiwei1419
链接:https://leetcode-cn.com/problems/maximum-subarray/solution/dong-tai-gui-hua-fen-zhi-fa-python-dai-ma-java-dai/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。