8、针灸治疗的关键要素解析

针灸治疗的关键要素解析

1. 针灸治疗的控制方法

从针灸反射学角度来看,针灸治疗的有效性是通过刺激体表来干预人体的自动控制系统实现的。目前,针灸信息在人体内部的传递、转换和处理过程仍不明确。为了实现最佳治疗效果,控制针灸治疗过程主要有两种方法:
- 输入/输出测试 :在反复治疗中,收集每次针灸输入对应的疾病输出(症状或体征的变化),寻找能改善疾病输出的最佳输入(如选穴、刺激强度),逐步建立患者身体的控制模式。
- 反馈原理应用 :通过反馈来调整对人体这个“黑箱”的控制。

2. 最佳刺激位置选择

不同类型的疾病,其最佳刺激位置有所不同:
- 躯体疾病
- 阿是穴 :患病区域的压痛点或自发痛处,针刺时需刺中穴位中心以产生强烈针感和长效止痛效果。
- 对应躯体反射区穴位 :可选择患病区域内的敏感点、相邻或远端穴位。例如,治疗坐骨神经痛可直接刺激环跳(GB30)和殷门(BL37)处的坐骨神经干;治疗膝关节骨性关节炎可刺激梁丘(ST34)的骨膜或膝眼(EX146)内的关节感受器。
- 远端穴位选择原则 :一般选择与疾病表现所在相同子区域的穴位,类似于循经选穴法。如胸部手术选三阳络(TE8),甲状腺手术选扶突(LI18)等。
- 相邻穴位选择 :当局部穴位因各种原因难以针刺时,可选择相邻穴位。例如骨折患者因打石膏不便针刺局部穴位时,可选择相邻穴位;治疗不明原

内容概要:本文详细介绍了一个基于Python实现的锂电池剩余寿命(RUL)预测项目,采用Transformer-LSTM混合深度学习模型,结合GUI界面实现智能化预测与可视化分析。项目涵盖从数据生成、特征工程、模型构建(Transformer自注意力机制与LSTM时序建模融合)、训练优化、性能评估到实际部署的全流程。通过滑动窗口采样、数据归一化、多维度评估指标(MSE、MAE、R²、RMSE、MAPE)及残差分析,确保模型高精度与鲁棒性。同时集成注意力权重与LSTM隐状态可视化功能,提升模型可解释性,并设计了完整的GUI交互系统,支持数据加载、模型热插拔推理与预测结果动态展示。; 适合人群:具备一定Python编程基础和深度学习知识,熟悉PyTorch框架的数据科学从业者、研究生及从事新能源、智能制造、电池管理系统开发的工程师。; 使用场景及目标:①应用于新能源汽车、储能电站、消费电子等领域的电池健康管理;②实现锂电池剩余寿命的高精度动态预测,支持智能运维与故障预警;③为科研人员提供可复现、可扩展的深度学习时序建模实例,推动电池寿命预测技术的工程化落地。; 阅读建议:建议读者结合代码与文档逐步实践,重点关注数据预处理、模型结构设计与GUI集成部分,尝试在本地环境中运行并调试程序,深入理解Transformer与LSTM协同工作机制,同时可扩展多模态输入或轻量化部署以适应更多应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值