混沌图像加密:现状、生态系统与前景
1. 随机数生成与混沌维度
在密码学中,真随机数生成器(TRNGs)非常重要,但在软件中难以实现。为解决这一问题,有人提出使用一种硬件设备(物理不可克隆函数,PUF)来生成真随机数的加密算法。经大量实验和分析,该 TRNG 成功通过了密码算法安全使用所需的所有测试。
混沌映射的维度指其组成的函数数量。许多图像加密算法会利用不同维度的混沌函数,具体分类如下:
- 一维 :如 Wang 和 Lui 提出的一维正弦混沌系统(1DSCS),与标准正弦映射相比,其参数区间更大;Elghandour 等人和 Tiwari 等人分别提出利用一维帐篷映射的图像加密算法,经测试,这些算法能有效抵御常见的密码攻击。
- 二维 :Yang 和 Tong 提出基于二维混沌的图像加密算法,使用二维逻辑混沌系统和新颖的分块图像加密程序,实验结果显示该算法随机性强、像素相关性低且密钥敏感性高。
- 三维 :Qian 等人利用 3D 逻辑和猫映射提出图像加密算法,新颖的图像重建技术提高了算法的有效性;Asl 等人将 2D 图像转换到三维空间,使用 3D 模块化混沌映射进行加密;Cao 和 Fu 使用 Rossler 混沌系统,Xiu - chun 和 E - Nuo 使用 Lorenz 系统分别提出算法。
- 四维 :Huang 等人提出基于“形状同步”和“驱动 - 响应”概念的四维混沌系统,复杂的数学基础使算法难以破解,图像加密实验显示其效果良好。
- 五维
超级会员免费看
订阅专栏 解锁全文
1359

被折叠的 条评论
为什么被折叠?



