基于python汽车推荐系统 双协同过滤推荐算法 Django框架(大数据毕业设计)✅

本文介绍了2023-2024年计算机专业的毕业设计项目,以汽车推荐系统为例,使用Python、Django、协同过滤算法(用户推荐和物品推荐)以及前端技术(CSS+JS+HTML)。项目包含用户协同过滤推荐、物品协同过滤推荐等功能,旨在帮助学生了解Web应用开发和个性化推荐技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

毕业设计:2023-2024年计算机专业毕业设计选题汇总(建议收藏)

毕业设计:2023-2024年最新最全计算机专业毕设选题推荐汇总

🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅

1、项目介绍

技术栈:
Python语言、Django框架、双协同过滤推荐算法(基于用户推荐+基于物品推荐)、CSS+JS+HTML

汽车推荐系统是一个基于Python语言、Django框架、双协同过滤推荐算法、CSS+JS+HTML技术栈的Web应用程序,它的主要功能是向用户推荐适合其需求的汽车。

2、项目界面

(1)基于用户协同过滤算法推荐

在这里插入图片描述

(2)基于物品协同过滤算法推荐

在这里插入图片描述

(3)汽车品牌数据分类

在这里插入图片描述

(4)汽车详情页面

在这里插入图片描述

(5)用户评分记录

在这里插入图片描述

(6)用户收藏记录

在这里插入图片描述

(7)热门车型推荐

在这里插入图片描述

(8)后台数据管理

在这里插入图片描述

(9)注册登录界面

在这里插入图片描述

3、项目说明

汽车推荐系统是一个基于Python语言、Django框架、双协同过滤推荐算法、CSS+JS+HTML技术栈的Web应用程序,它的主要功能是向用户推荐适合其需求的汽车。

下面是一个简单的汽车推荐系统的工作流程:

用户进入网站后,填写一份汽车需求问卷,包括品牌、价格、使用场景等信息。
根据用户的需求问卷,系统会通过基于用户的协同过滤算法和基于物品的协同过滤算法,分别推荐适合用户口味的汽车品牌和型号。
推荐结果将以列表或卡片形式展示在网页上,用户可以点击查看详情,了解更多汽车信息。
用户还可以保存自己感兴趣的汽车,在我的收藏夹中查看和管理。
除此之外,汽车推荐系统还可以提供车辆信息的搜索功能,用户可以通过关键词搜索到与汽车相关的品牌、型号和配置等信息。同时,系统还可以对用户的收藏行为进行分析,为用户提供更加个性化的推荐服务。

总之,汽车推荐系统的目标是帮助用户更轻松地找到适合自己的汽车,提高购车体验和效率。

4、核心代码


# 基于用户的协同过滤推荐算法实现模块
import operator
from apps.util.cfra.common.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值