毕业设计:2023-2024年计算机专业毕业设计选题汇总(建议收藏)
毕业设计:2023-2024年最新最全计算机专业毕设选题推荐汇总
🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅
1、项目介绍
技术栈:
Python语言、Django框架、双协同过滤推荐算法(基于用户推荐+基于物品推荐)、CSS+JS+HTML
汽车推荐系统是一个基于Python语言、Django框架、双协同过滤推荐算法、CSS+JS+HTML技术栈的Web应用程序,它的主要功能是向用户推荐适合其需求的汽车。
2、项目界面
(1)基于用户协同过滤算法推荐
(2)基于物品协同过滤算法推荐
(3)汽车品牌数据分类
(4)汽车详情页面
(5)用户评分记录
(6)用户收藏记录
(7)热门车型推荐
(8)后台数据管理
(9)注册登录界面
3、项目说明
汽车推荐系统是一个基于Python语言、Django框架、双协同过滤推荐算法、CSS+JS+HTML技术栈的Web应用程序,它的主要功能是向用户推荐适合其需求的汽车。
下面是一个简单的汽车推荐系统的工作流程:
用户进入网站后,填写一份汽车需求问卷,包括品牌、价格、使用场景等信息。
根据用户的需求问卷,系统会通过基于用户的协同过滤算法和基于物品的协同过滤算法,分别推荐适合用户口味的汽车品牌和型号。
推荐结果将以列表或卡片形式展示在网页上,用户可以点击查看详情,了解更多汽车信息。
用户还可以保存自己感兴趣的汽车,在我的收藏夹中查看和管理。
除此之外,汽车推荐系统还可以提供车辆信息的搜索功能,用户可以通过关键词搜索到与汽车相关的品牌、型号和配置等信息。同时,系统还可以对用户的收藏行为进行分析,为用户提供更加个性化的推荐服务。
总之,汽车推荐系统的目标是帮助用户更轻松地找到适合自己的汽车,提高购车体验和效率。
4、核心代码
# 基于用户的协同过滤推荐算法实现模块
import operator
from apps.util.cfra.common.Constant import Constant
from apps.util.cfra.model.DataModel import DataModel
from apps.util.cfra.neighborhood.UserNeighborhood import UserNeighborhood
from apps.util.cfra.recommender.UserRecommender import UserRecommender
from apps.util.cfra.similarity.CosineSimilarity import CosineSimilarity
from apps.util.cfra.similarity.UserSimilarity import UserSimilarity
class UserCF(object):
def __init__(self):
pass
# 推荐方法
def recommend(self, dataModel, cUserid):
print("基于用户的协同过滤推荐算法开始")
# 获取用户id列表
userIDsList = dataModel.userIDsList
if len(userIDsList) == 0:
print("\n暂无评分数据!")
print("\n基于用户的协同过滤推荐算法结束")
return None
# 升序排列
userIDsList = sorted(userIDsList, reverse=False)
print("用户数量:%d" % len(userIDsList))
# 输出用户id列表
dataModel.printUserIds(userIDsList)
# 获取项目id列表
itemIDsList = dataModel.itemIDsList
# 降序排列
itemIDsList = sorted(itemIDsList, reverse=False)
print("\n项目数量:%d" % len(itemIDsList))
# 输出项目id列表
dataModel.printItemIds(itemIDsList)
# 打印用户项目喜好矩阵
dataModel.printUserItemPrefMatrix(userIDsList,dataModel.userItemPrefMatrixDic)
# 判断当前用户是否有评分数据
if cUserid not in dataModel.userItemPrefMatrixDic.keys():
print("\n当前用户 %s 暂无评分数据!" % cUserid)
print("\n基于用户的协同过滤推荐算法结束")
return None
# 实例化余弦相似度算法
cosineSimilarity = CosineSimilarity()
# 实例化用户相似度
userSimilarity = UserSimilarity()
# 计算目标用户与其他用户的相似度
userSimilarityDic = userSimilarity.getUserSimilaritys(cUserid, cosineSimilarity, dataModel)
# 先根据用户id升序
userSimilarityDicTemp = sorted(userSimilarityDic.items(), key=operator.itemgetter(0), reverse=False)
print("\n用户:%-5s与其他用户的相似度为:" % cUserid)
# 输出目标用户的相似度
userSimilarity.printUserSimilaritys(userSimilarityDicTemp)
# 实例化用户邻居对象
userNeighborhood = UserNeighborhood()
# 获取目标用户的最近邻居
kNUserNeighborhood = userNeighborhood.getKUserNeighborhoods(userSimilarityDic)
print("\n用户:%-5s的前%d个最近邻居为:" % (cUserid, Constant.knn))
# 输出目标用户的最近邻居
userNeighborhood.printKUserNeighborhoods(kNUserNeighborhood)
# 实例化用户推荐对象
userRecommender = UserRecommender()
# 推荐
recommenderItemFinalDic = userRecommender.getUserRecommender(cUserid, dict(kNUserNeighborhood), dataModel)
print("\n用户:%-5s的前%d个推荐项目为:" % (cUserid, Constant.cfCount))
recommenderItemFinalDic = sorted(recommenderItemFinalDic.items(), key=operator.itemgetter(1), reverse=True)
recommenderItemFinalDic = recommenderItemFinalDic[0:Constant.cfCount]
# 打印预测评分
userRecommender.printPref(recommenderItemFinalDic)
print("\n基于用户的协同过滤推荐算法结束")
return recommenderItemFinalDic
5、源码获取方式
🍅由于篇幅限制,获取完整文章或源码、代做项目的,查看我的【用户名】、【专栏名称】、【顶部选题链接】就可以找到我啦🍅
感兴趣的可以先收藏起来,点赞、关注不迷路,下方查看👇🏻获取联系方式👇🏻