基于python汽车推荐系统 双协同过滤推荐算法 Django框架(大数据毕业设计)✅

199 篇文章 10 订阅
191 篇文章 89 订阅
本文介绍了2023-2024年计算机专业的毕业设计项目,以汽车推荐系统为例,使用Python、Django、协同过滤算法(用户推荐和物品推荐)以及前端技术(CSS+JS+HTML)。项目包含用户协同过滤推荐、物品协同过滤推荐等功能,旨在帮助学生了解Web应用开发和个性化推荐技术。
摘要由CSDN通过智能技术生成

毕业设计:2023-2024年计算机专业毕业设计选题汇总(建议收藏)

毕业设计:2023-2024年最新最全计算机专业毕设选题推荐汇总

🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅

1、项目介绍

技术栈:
Python语言、Django框架、双协同过滤推荐算法(基于用户推荐+基于物品推荐)、CSS+JS+HTML

汽车推荐系统是一个基于Python语言、Django框架、双协同过滤推荐算法、CSS+JS+HTML技术栈的Web应用程序,它的主要功能是向用户推荐适合其需求的汽车。

2、项目界面

(1)基于用户协同过滤算法推荐

在这里插入图片描述

(2)基于物品协同过滤算法推荐

在这里插入图片描述

(3)汽车品牌数据分类

在这里插入图片描述

(4)汽车详情页面

在这里插入图片描述

(5)用户评分记录

在这里插入图片描述

(6)用户收藏记录

在这里插入图片描述

(7)热门车型推荐

在这里插入图片描述

(8)后台数据管理

在这里插入图片描述

(9)注册登录界面

在这里插入图片描述

3、项目说明

汽车推荐系统是一个基于Python语言、Django框架、双协同过滤推荐算法、CSS+JS+HTML技术栈的Web应用程序,它的主要功能是向用户推荐适合其需求的汽车。

下面是一个简单的汽车推荐系统的工作流程:

用户进入网站后,填写一份汽车需求问卷,包括品牌、价格、使用场景等信息。
根据用户的需求问卷,系统会通过基于用户的协同过滤算法和基于物品的协同过滤算法,分别推荐适合用户口味的汽车品牌和型号。
推荐结果将以列表或卡片形式展示在网页上,用户可以点击查看详情,了解更多汽车信息。
用户还可以保存自己感兴趣的汽车,在我的收藏夹中查看和管理。
除此之外,汽车推荐系统还可以提供车辆信息的搜索功能,用户可以通过关键词搜索到与汽车相关的品牌、型号和配置等信息。同时,系统还可以对用户的收藏行为进行分析,为用户提供更加个性化的推荐服务。

总之,汽车推荐系统的目标是帮助用户更轻松地找到适合自己的汽车,提高购车体验和效率。

4、核心代码


# 基于用户的协同过滤推荐算法实现模块
import operator
from apps.util.cfra.common.Constant import Constant
from apps.util.cfra.model.DataModel import DataModel
from apps.util.cfra.neighborhood.UserNeighborhood import UserNeighborhood
from apps.util.cfra.recommender.UserRecommender import UserRecommender
from apps.util.cfra.similarity.CosineSimilarity import CosineSimilarity
from apps.util.cfra.similarity.UserSimilarity import UserSimilarity


class UserCF(object):

    def __init__(self):
        pass

    # 推荐方法
    def recommend(self, dataModel, cUserid):
        print("基于用户的协同过滤推荐算法开始")
        # 获取用户id列表
        userIDsList = dataModel.userIDsList

        if len(userIDsList) == 0:
            print("\n暂无评分数据!")
            print("\n基于用户的协同过滤推荐算法结束")
            return None

        # 升序排列
        userIDsList = sorted(userIDsList, reverse=False)
        print("用户数量:%d" % len(userIDsList))
        # 输出用户id列表
        dataModel.printUserIds(userIDsList)

        # 获取项目id列表
        itemIDsList = dataModel.itemIDsList
        # 降序排列
        itemIDsList = sorted(itemIDsList, reverse=False)
        print("\n项目数量:%d" % len(itemIDsList))
        # 输出项目id列表
        dataModel.printItemIds(itemIDsList)

        # 打印用户项目喜好矩阵
        dataModel.printUserItemPrefMatrix(userIDsList,dataModel.userItemPrefMatrixDic)

        # 判断当前用户是否有评分数据
        if cUserid not in dataModel.userItemPrefMatrixDic.keys():
            print("\n当前用户 %s 暂无评分数据!" % cUserid)
            print("\n基于用户的协同过滤推荐算法结束")
            return None

        # 实例化余弦相似度算法
        cosineSimilarity = CosineSimilarity()

        # 实例化用户相似度
        userSimilarity = UserSimilarity()

        # 计算目标用户与其他用户的相似度
        userSimilarityDic = userSimilarity.getUserSimilaritys(cUserid, cosineSimilarity, dataModel)
        # 先根据用户id升序
        userSimilarityDicTemp = sorted(userSimilarityDic.items(), key=operator.itemgetter(0), reverse=False)
        print("\n用户:%-5s与其他用户的相似度为:" % cUserid)
        # 输出目标用户的相似度
        userSimilarity.printUserSimilaritys(userSimilarityDicTemp)

        # 实例化用户邻居对象
        userNeighborhood = UserNeighborhood()
        # 获取目标用户的最近邻居
        kNUserNeighborhood = userNeighborhood.getKUserNeighborhoods(userSimilarityDic)
        print("\n用户:%-5s的前%d个最近邻居为:" % (cUserid, Constant.knn))
        # 输出目标用户的最近邻居
        userNeighborhood.printKUserNeighborhoods(kNUserNeighborhood)

        # 实例化用户推荐对象
        userRecommender = UserRecommender()
        # 推荐
        recommenderItemFinalDic = userRecommender.getUserRecommender(cUserid, dict(kNUserNeighborhood), dataModel)
        print("\n用户:%-5s的前%d个推荐项目为:" % (cUserid, Constant.cfCount))

        recommenderItemFinalDic = sorted(recommenderItemFinalDic.items(), key=operator.itemgetter(1), reverse=True)
        recommenderItemFinalDic = recommenderItemFinalDic[0:Constant.cfCount]
        # 打印预测评分
        userRecommender.printPref(recommenderItemFinalDic)

        print("\n基于用户的协同过滤推荐算法结束")
        return recommenderItemFinalDic

5、源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,查看我的【用户名】、【专栏名称】、【顶部选题链接】就可以找到我啦🍅

感兴趣的可以先收藏起来,点赞、关注不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值