基于python旅游景点数据分析系统 旅游分析可视化 +Flask框架 穷游网数据 requests爬虫 大数据毕业设计✅

博主介绍:✌全网粉丝10W+,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业项目实战6年之久,选择我们就是选择放心、选择安心毕业✌
> 🍅想要获取完整文章或者源码,或者代做,拉到文章底部即可与我联系了。🍅

点击查看作者主页,了解更多项目!

🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅

1、毕业设计:2025年计算机专业毕业设计选题汇总(建议收藏)✅

2、大数据毕业设计:2025年选题大全 深度学习 python语言 JAVA语言 hadoop和spark(建议收藏)✅

1、项目介绍

技术栈:
Python语言、Flask框架、穷游网数据、requests爬虫、Echarts可视化

2、项目界面

(1)景点点评分析
在这里插入图片描述

(2)景点评价分析

在这里插入图片描述

(3)景点评分分析

在这里插入图片描述

(4)景点词云图分析
在这里插入图片描述

(5)门票、到达方式、开放时间占比分析
在这里插入图片描述

(6)注册登录

在这里插入图片描述
(7)数据采集
在这里插入图片描述

3、项目说明

  1. 数据采集
    功能描述:通过爬虫技术从穷游网等旅游相关网站采集景点的点评、评分、门票信息、到达方式、开放时间等数据。
    技术实现:使用Python语言和requests库编写爬虫程序,模拟浏览器行为访问目标网站,提取所需数据并存储到本地数据库或文件中。
    用户交互:管理员可以通过后台界面启动数据采集任务,系统会自动运行爬虫程序,并将采集到的数据存储起来,供后续分析使用。
  2. 景点评点分析
    功能描述:对采集到的景点点评数据进行情感分析和主题提取,了解游客对景点的整体评价和关注点。
    技术实现:使用自然语言处理技术,结合文本分析算法,对点评内容进行情感分类(正面、负面、中性),并提取关键词和主题。
    用户交互:用户可以通过前端界面查看不同景点的点评情感分布,以及游客关注的热门话题,帮助用户快速了解景点的优缺点。
  3. 景点评价分析
    功能描述:对景点的总体评价进行量化分析,展示景点的综合评分、好评率、差评率等指标。
    技术实现:通过统计分析方法,计算每个景点的评分分布和好评率,生成直观的图表展示结果。
    用户交互:用户可以通过界面查看各景点的评价统计图表,快速对比不同景点的受欢迎程度。
  4. 景点评分分析
    功能描述:分析景点评分随时间的变化趋势,了解景点在不同时间段的受欢迎程度。
    技术实现:使用时间序列分析方法,对景点评分数据进行趋势分析,生成折线图展示评分变化趋势。
    用户交互:用户可以选择特定景点,查看其评分随时间的变化曲线,帮助用户选择最佳旅游时间。
  5. 景点词云图分析
    功能描述:通过词云图直观展示游客对景点的高频词汇,突出游客关注的热点和关键词。
    技术实现:对点评文本进行分词处理,统计词频并生成词云图。
    用户交互:用户可以通过界面查看景点的词云图,快速了解游客对景点的常见评价和关注点。
  6. 门票、到达方式、开放时间占比分析
    功能描述:分析景点门票价格、到达方式和开放时间的分布情况,为游客提供实用信息。
    技术实现:对采集到的门票价格、到达方式和开放时间数据进行分类统计,生成饼图或柱状图展示占比情况。
    用户交互:用户可以通过界面查看门票价格分布、不同到达方式的占比以及开放时间的统计信息,帮助游客提前规划行程。
  7. 注册登录
    功能描述:提供用户注册和登录功能,方便用户保存个性化设置和查看历史记录。
    技术实现:使用Flask框架实现用户认证功能,支持用户注册、登录、密码找回等操作。
    用户交互:用户可以通过注册页面创建账号,通过登录页面进入系统,系统会根据用户权限提供相应的功能和服务。

4、核心代码


from sqlalchemy import create_engine
import pandas as pd
from pyecharts.charts import Bar, Pie, WordCloud, Page, Scatter
from pyecharts import options as opts

engine = create_engine('mysql+pymysql://root:123456@localhost:3306/qiongyou')
sql1 = "select * from data"
df1 = pd.read_sql_query(sql1, engine)

def bar():
    count_dict = {
   "0-2": 0, "2-4": 0, "4-6": 0, "6-8": 0, "8-10": 0}

    df_count = df1[["评分", "index"]]
    count = []
    for index, row in df_count.iterrows():
        count.append(row["评分"])

    for item in count:
        if item < 2:
            count_dict["0-2"] = count_dict["0-2"] + 1
        elif 2 <= item < 4:
            count_dict["2-4"] = count_dict["2-4"] + 1
        elif 4 <= item < 6:
            count_dict["4-6"] = count_dict["4-6"] + 1
        elif 6 <= item < 8:
            count_dict["6-8"] = count_dict["6-8"] + 1
        else:
            count_dict["8-10"] = count_dict["8-10"] + 1
    x_data = list(count_dict.keys())
    y_data = list(count_dict.values())
    c = (
        Bar()
            .add_xaxis(x_data)
            .add_yaxis("地点", y_data)
            .reversal_axis()
            .set_series_opts(label_opts=opts.LabelOpts(position="right"))
            .set_global_opts(title_opts=opts.TitleOpts(title="景点评分占比"))
            .render("templates/bar.html")
    )

def pie():
    df_ticket = df1["门票"]

    data_dict = {
   "免费": 0, "收费": 0}

    for item in df_ticket:
        if item != None:
            if "免费" in item:
                data_dict["免费"] += 1
            else:
                data_dict["收费"] += 1
    x_data = list(data_dict.keys())
    y_data = list(data_dict.values())
    c = (
        Pie()
            .add("", [list(z) for z in zip(x_data, y_data)])
            .set_global_opts(title_opts=opts.TitleOpts
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值