博主介绍:✌全网粉丝10W+,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业项目实战6年之久,选择我们就是选择放心、选择安心毕业✌
> 🍅想要获取完整文章或者源码,或者代做,拉到文章底部即可与我联系了。🍅🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅
1、毕业设计:2025年计算机专业毕业设计选题汇总(建议收藏)✅
2、大数据毕业设计:2025年选题大全 深度学习 python语言 JAVA语言 hadoop和spark(建议收藏)✅
1、项目介绍
技术栈:
Python语言、Flask框架、穷游网数据、requests爬虫、Echarts可视化
2、项目界面
(1)景点点评分析
(2)景点评价分析
(3)景点评分分析
(4)景点词云图分析
(5)门票、到达方式、开放时间占比分析
(6)注册登录
(7)数据采集
3、项目说明
- 数据采集
功能描述:通过爬虫技术从穷游网等旅游相关网站采集景点的点评、评分、门票信息、到达方式、开放时间等数据。
技术实现:使用Python语言和requests库编写爬虫程序,模拟浏览器行为访问目标网站,提取所需数据并存储到本地数据库或文件中。
用户交互:管理员可以通过后台界面启动数据采集任务,系统会自动运行爬虫程序,并将采集到的数据存储起来,供后续分析使用。 - 景点评点分析
功能描述:对采集到的景点点评数据进行情感分析和主题提取,了解游客对景点的整体评价和关注点。
技术实现:使用自然语言处理技术,结合文本分析算法,对点评内容进行情感分类(正面、负面、中性),并提取关键词和主题。
用户交互:用户可以通过前端界面查看不同景点的点评情感分布,以及游客关注的热门话题,帮助用户快速了解景点的优缺点。 - 景点评价分析
功能描述:对景点的总体评价进行量化分析,展示景点的综合评分、好评率、差评率等指标。
技术实现:通过统计分析方法,计算每个景点的评分分布和好评率,生成直观的图表展示结果。
用户交互:用户可以通过界面查看各景点的评价统计图表,快速对比不同景点的受欢迎程度。 - 景点评分分析
功能描述:分析景点评分随时间的变化趋势,了解景点在不同时间段的受欢迎程度。
技术实现:使用时间序列分析方法,对景点评分数据进行趋势分析,生成折线图展示评分变化趋势。
用户交互:用户可以选择特定景点,查看其评分随时间的变化曲线,帮助用户选择最佳旅游时间。 - 景点词云图分析
功能描述:通过词云图直观展示游客对景点的高频词汇,突出游客关注的热点和关键词。
技术实现:对点评文本进行分词处理,统计词频并生成词云图。
用户交互:用户可以通过界面查看景点的词云图,快速了解游客对景点的常见评价和关注点。 - 门票、到达方式、开放时间占比分析
功能描述:分析景点门票价格、到达方式和开放时间的分布情况,为游客提供实用信息。
技术实现:对采集到的门票价格、到达方式和开放时间数据进行分类统计,生成饼图或柱状图展示占比情况。
用户交互:用户可以通过界面查看门票价格分布、不同到达方式的占比以及开放时间的统计信息,帮助游客提前规划行程。 - 注册登录
功能描述:提供用户注册和登录功能,方便用户保存个性化设置和查看历史记录。
技术实现:使用Flask框架实现用户认证功能,支持用户注册、登录、密码找回等操作。
用户交互:用户可以通过注册页面创建账号,通过登录页面进入系统,系统会根据用户权限提供相应的功能和服务。
4、核心代码
from sqlalchemy import create_engine
import pandas as pd
from pyecharts.charts import Bar, Pie, WordCloud, Page, Scatter
from pyecharts import options as opts
engine = create_engine('mysql+pymysql://root:123456@localhost:3306/qiongyou')
sql1 = "select * from data"
df1 = pd.read_sql_query(sql1, engine)
def bar():
count_dict = {
"0-2": 0, "2-4": 0, "4-6": 0, "6-8": 0, "8-10": 0}
df_count = df1[["评分", "index"]]
count = []
for index, row in df_count.iterrows():
count.append(row["评分"])
for item in count:
if item < 2:
count_dict["0-2"] = count_dict["0-2"] + 1
elif 2 <= item < 4:
count_dict["2-4"] = count_dict["2-4"] + 1
elif 4 <= item < 6:
count_dict["4-6"] = count_dict["4-6"] + 1
elif 6 <= item < 8:
count_dict["6-8"] = count_dict["6-8"] + 1
else:
count_dict["8-10"] = count_dict["8-10"] + 1
x_data = list(count_dict.keys())
y_data = list(count_dict.values())
c = (
Bar()
.add_xaxis(x_data)
.add_yaxis("地点", y_data)
.reversal_axis()
.set_series_opts(label_opts=opts.LabelOpts(position="right"))
.set_global_opts(title_opts=opts.TitleOpts(title="景点评分占比"))
.render("templates/bar.html")
)
def pie():
df_ticket = df1["门票"]
data_dict = {
"免费": 0, "收费": 0}
for item in df_ticket:
if item != None:
if "免费" in item:
data_dict["免费"] += 1
else:
data_dict["收费"] += 1
x_data = list(data_dict.keys())
y_data = list(data_dict.values())
c = (
Pie()
.add("", [list(z) for z in zip(x_data, y_data)])
.set_global_opts(title_opts=opts.TitleOpts