博主介绍:✌全网粉丝10W+,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业项目实战6年之久,选择我们就是选择放心、选择安心毕业✌
> 🍅想要获取完整文章或者源码,或者代做,拉到文章底部即可与我联系了。🍅🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅
1、毕业设计:2025年计算机专业毕业设计选题汇总(建议收藏)✅
2、大数据毕业设计:2025年选题大全 深度学习 python语言 JAVA语言 hadoop和spark(建议收藏)✅
1、项目介绍
技术栈:
python语言、Flask框架、MySQL数据库、Echarts可视化、HTML、股票数据、数据分析、数据可视化
2、项目界面
(1)词云图分析
(2)股价与排名分析
(3)新晋粉丝与铁粉比例
(4)首页–数据概况
(5)股票发行与最新价格分析
(6)股票价格变动情况分析
(6)股票粉丝占比
(7)股票价格趋势
(8)股票发行漏斗图分析
(9)股价与粉丝占比关系分析
(10)股价变动热力图
(11)榜单列表数据管理
(12)股票数据管理
(13)注册登录
3、项目说明
项目功能模块介绍
(1)词云图分析
- 功能描述:
- 通过词云图展示与股票相关的高频词汇,帮助用户快速了解市场热点和投资者关注的焦点。
- 词云图的大小和颜色表示词汇的出现频率或重要性。
- 技术实现:
- 使用 Python 的
wordcloud
库生成词云图。 - 数据来源可以是股票相关的新闻、社交媒体评论或用户搜索记录。
- 通过 Flask 后端将生成的词云图传递到前端页面展示。
- 使用 Python 的
(2)股价与排名分析
- 功能描述:
- 展示不同股票的当前价格及其在市场中的排名情况。
- 可能包括涨跌幅、市值等指标的排名。
- 帮助用户快速了解股票的市场表现和相对位置。
- 技术实现:
- 使用 ECharts 的柱状图或折线图展示排名变化。
- 数据从 MySQL 数据库中提取,通过 Flask 后端接口传递到前端页面。
(3)新晋粉丝与铁粉比例
- 功能描述:
- 分析股票的关注者中,新晋粉丝(近期关注者)与铁粉(长期关注者)的比例。
- 帮助投资者了解股票的关注度变化趋势和投资者忠诚度。
- 技术实现:
- 使用 ECharts 的饼图或柱状图展示比例关系。
- 数据来源于用户关注行为记录,存储在 MySQL 数据库中。
(4)首页–数据概况
- 功能描述:
- 在首页展示股票市场的整体数据概况,如总市值、成交额、涨跌停数量等。
- 提供用户对市场整体情况的快速了解。
- 技术实现:
- 使用 HTML 和 CSS 构建首页布局。
- 数据从 MySQL 数据库中提取,通过 Flask 后端接口传递到前端页面。
(5)股票发行与最新价格分析
- 功能描述:
- 展示股票的发行信息(如发行日期、发行价格)与当前最新价格的对比。
- 帮助用户了解股票自发行以来的价格变化趋势。
- 技术实现:
- 使用 ECharts 的折线图或柱状图展示价格变化。
- 数据从 MySQL 数据库中提取,通过 Flask 后端接口传递到前端页面。
(6)股票价格变动情况分析
- 功能描述:
- 展示股票价格在不同时间段内的变动情况,包括日线、周线、月线等。
- 提供价格波动的详细分析,帮助用户做出投资决策。
- 技术实现:
- 使用 ECharts 的 K 线图或折线图展示价格走势。
- 数据从 MySQL 数据库中提取,通过 Flask 后端接口传递到前端页面。
(7)股票粉丝占比
- 功能描述:
- 展示不同股票的关注者占比情况,帮助用户了解股票的受欢迎程度。
- 技术实现:
- 使用 ECharts 的饼图或柱状图展示占比关系。
- 数据来源于用户关注行为记录,存储在 MySQL 数据库中。
(8)股票价格趋势
- 功能描述:
- 展示股票价格的长期趋势,帮助用户分析股票的未来走势。
- 技术实现:
- 使用 ECharts 的折线图展示价格趋势。
- 数据从 MySQL 数据库中提取,通过 Flask 后端接口传递到前端页面。
(9)股票发行漏斗图分析
- 功能描述:
- 使用漏斗图展示股票发行过程中的各个阶段(如申购、配售、上市)的转化率。
- 帮助用户了解股票发行的效率和市场接受程度。
- 技术实现:
- 使用 ECharts 的漏斗图组件。
- 数据从 MySQL 数据库中提取,通过 Flask 后端接口传递到前端页面。
(10)股价与粉丝占比关系分析
- 功能描述:
- 分析股票价格与粉丝占比之间的关系,帮助用户了解投资者关注度对股价的影响。
- 技术实现:
- 使用 ECharts 的散点图或折线图展示两者关系。
- 数据来源于用户关注行为记录和股票价格数据,存储在 MySQL 数据库中。
(11)股价变动热力图
- 功能描述:
- 使用热力图展示股票价格在不同时间段内的变动情况,颜色深浅表示价格变化幅度。
- 帮助用户快速识别价格波动较大的时间段。
- 技术实现:
- 使用 ECharts 的热力图组件。
- 数据从 MySQL 数据库中提取,通过 Flask 后端接口传递到前端页面。
(12)榜单列表数据管理
- 功能描述:
- 提供股票榜单(如涨幅榜、跌幅榜、市值榜等)的管理和展示。
- 用户可以查看不同榜单的股票信息。
- 技术实现:
- 使用 HTML 和 Flask 框架构建榜单页面。
- 数据从 MySQL 数据库中提取,通过 Flask 后端接口传递到前端页面。
(13)股票数据管理
- 功能描述:
- 提供股票数据的管理功能,包括数据录入、更新、删除等操作。
- 管理员可以通过该模块维护股票数据的准确性。
- 技术实现:
- 使用 Flask 框架构建数据管理页面。
- 数据存储在 MySQL 数据库中,通过 Flask 后端进行数据操作。
(14)注册登录
- 功能描述:
- 提供用户注册和登录功能。
- 用户可以通过用户名和密码登录系统,访问个人中心和其他功能模块。
- 技术实现:
- 使用 Flask 的用户认证模块(如 Flask-Login)实现用户登录功能。
- 用户信息存储在 MySQL 数据库中,通过 Flask 后端进行数据验证和管理。
4、核心代码
def predict_stock_prices(data, steps):
# Prepare data for modeling
data['date'] = pd.to_datetime(data['date'])
data.set_index('date', inplace=True)
# Simple linear regression (replace with actual prediction logic)
X = np.array(range(len(data))).reshape(-1, 1)
y = data['price'].values
model = LinearRegression()
model.fit(X, y)
# Predict the next 'steps' days
future_days = np.array(range(len(data), len(data) + steps)).reshape(-1, 1)
future_predictions = model.predict(future_days)
# Create a date range for future days
future_dates = pd.date_range(data.index[-1], periods=steps + 1, freq='D')[1:]
# Create a DataFrame for predictions
predictions = pd.DataFrame(future_predictions, index=future_dates, columns=['predicted_price'])
return predictions
@app.route("/predict_stock", methods=["GET", "POST"])
def predict_stock():
if request.method == "POST":
stock_name = request.form['stock_name']
steps = int(request.form.get('steps', 30)) # Default 30 days prediction
try:
# Retrieve stock data from the database
stock_data = StockRanking.query.filter_by(stock_name=stock_name).order_by(StockRanking.id.asc()).all()
if not stock_data:
return jsonify({'success': False, 'error': 'No data found for the given stock name'})
# Prepare the data for prediction (mock dates and prices)
data = pd.DataFrame([{
'date': str(stock.id), # Use 'id' or real date if available
'price': stock.latest_price
} for stock in stock_data])
# Run the prediction model
predictions = predict_stock_prices(data, steps)
# Format the predictions for response
predictions_dict = {
'dates': predictions.index.strftime('%Y-%m-%d').tolist(),
'prices': predictions['predicted_price'].tolist()
}
return jsonify({'success': True, 'predictions': predictions_dict, 'stock_name': stock_name})
except Exception as e:
return jsonify({'success': False, 'error': str(e)})
return render_template('predict_stock.html')
# Endpoint to suggest stocks based on user input (fuzzy matching)
@app.route("/suggest_stock", methods=["GET"])
def suggest_stock():
query = request.args.get('query', '')
if not query:
return jsonify({'success': False, 'message': 'Query is empty'})
# Example: Assuming StockRanking model and it has 'stock_name' field
stock_suggestions = StockRanking.query.filter(StockRanking.stock_name.like(f"%{query}%")).all()
if not stock_suggestions:
return jsonify({'success': False, 'message': 'No matching stocks found'})
# Return stock name suggestions
suggestions = [{'name': stock.stock_name} for stock in stock_suggestions]
return jsonify({'success': True, 'suggestions': suggestions})
if __name__ == "__main__":
app.run(host='127.0.0.1', port=5000)
5、源码获取方式
🍅由于篇幅限制,获取完整文章或源码、代做项目的,查看我的【用户名】、【专栏名称】、【顶部选题链接】就可以找到我啦🍅
感兴趣的可以先收藏起来,点赞、关注不迷路,下方查看👇🏻获取联系方式👇🏻