大数据毕业设计python股票数据分析可视化系统 金融数据分析 Flask框架 Echarts可视化 大数据技术 毕业设计✅

博主介绍:✌全网粉丝10W+,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业项目实战6年之久,选择我们就是选择放心、选择安心毕业✌
> 🍅想要获取完整文章或者源码,或者代做,拉到文章底部即可与我联系了。🍅

点击查看作者主页,了解更多项目!

🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅

1、毕业设计:2025年计算机专业毕业设计选题汇总(建议收藏)✅

2、大数据毕业设计:2025年选题大全 深度学习 python语言 JAVA语言 hadoop和spark(建议收藏)✅

1、项目介绍

技术栈:
python语言、Flask框架、MySQL数据库、Echarts可视化、HTML、股票数据、数据分析、数据可视化

2、项目界面

(1)词云图分析
在这里插入图片描述

(2)股价与排名分析

在这里插入图片描述

(3)新晋粉丝与铁粉比例

在这里插入图片描述

(4)首页–数据概况

在这里插入图片描述

(5)股票发行与最新价格分析

在这里插入图片描述

(6)股票价格变动情况分析
在这里插入图片描述

(6)股票粉丝占比
在这里插入图片描述
(7)股票价格趋势

在这里插入图片描述

(8)股票发行漏斗图分析

在这里插入图片描述

(9)股价与粉丝占比关系分析
在这里插入图片描述
(10)股价变动热力图

在这里插入图片描述

(11)榜单列表数据管理
在这里插入图片描述

(12)股票数据管理

在这里插入图片描述

(13)注册登录

在这里插入图片描述

3、项目说明

项目功能模块介绍

(1)词云图分析
  • 功能描述
    • 通过词云图展示与股票相关的高频词汇,帮助用户快速了解市场热点和投资者关注的焦点。
    • 词云图的大小和颜色表示词汇的出现频率或重要性。
  • 技术实现
    • 使用 Python 的 wordcloud 库生成词云图。
    • 数据来源可以是股票相关的新闻、社交媒体评论或用户搜索记录。
    • 通过 Flask 后端将生成的词云图传递到前端页面展示。
(2)股价与排名分析
  • 功能描述
    • 展示不同股票的当前价格及其在市场中的排名情况。
    • 可能包括涨跌幅、市值等指标的排名。
    • 帮助用户快速了解股票的市场表现和相对位置。
  • 技术实现
    • 使用 ECharts 的柱状图或折线图展示排名变化。
    • 数据从 MySQL 数据库中提取,通过 Flask 后端接口传递到前端页面。
(3)新晋粉丝与铁粉比例
  • 功能描述
    • 分析股票的关注者中,新晋粉丝(近期关注者)与铁粉(长期关注者)的比例。
    • 帮助投资者了解股票的关注度变化趋势和投资者忠诚度。
  • 技术实现
    • 使用 ECharts 的饼图或柱状图展示比例关系。
    • 数据来源于用户关注行为记录,存储在 MySQL 数据库中。
(4)首页–数据概况
  • 功能描述
    • 在首页展示股票市场的整体数据概况,如总市值、成交额、涨跌停数量等。
    • 提供用户对市场整体情况的快速了解。
  • 技术实现
    • 使用 HTML 和 CSS 构建首页布局。
    • 数据从 MySQL 数据库中提取,通过 Flask 后端接口传递到前端页面。
(5)股票发行与最新价格分析
  • 功能描述
    • 展示股票的发行信息(如发行日期、发行价格)与当前最新价格的对比。
    • 帮助用户了解股票自发行以来的价格变化趋势。
  • 技术实现
    • 使用 ECharts 的折线图或柱状图展示价格变化。
    • 数据从 MySQL 数据库中提取,通过 Flask 后端接口传递到前端页面。
(6)股票价格变动情况分析
  • 功能描述
    • 展示股票价格在不同时间段内的变动情况,包括日线、周线、月线等。
    • 提供价格波动的详细分析,帮助用户做出投资决策。
  • 技术实现
    • 使用 ECharts 的 K 线图或折线图展示价格走势。
    • 数据从 MySQL 数据库中提取,通过 Flask 后端接口传递到前端页面。
(7)股票粉丝占比
  • 功能描述
    • 展示不同股票的关注者占比情况,帮助用户了解股票的受欢迎程度。
  • 技术实现
    • 使用 ECharts 的饼图或柱状图展示占比关系。
    • 数据来源于用户关注行为记录,存储在 MySQL 数据库中。
(8)股票价格趋势
  • 功能描述
    • 展示股票价格的长期趋势,帮助用户分析股票的未来走势。
  • 技术实现
    • 使用 ECharts 的折线图展示价格趋势。
    • 数据从 MySQL 数据库中提取,通过 Flask 后端接口传递到前端页面。
(9)股票发行漏斗图分析
  • 功能描述
    • 使用漏斗图展示股票发行过程中的各个阶段(如申购、配售、上市)的转化率。
    • 帮助用户了解股票发行的效率和市场接受程度。
  • 技术实现
    • 使用 ECharts 的漏斗图组件。
    • 数据从 MySQL 数据库中提取,通过 Flask 后端接口传递到前端页面。
(10)股价与粉丝占比关系分析
  • 功能描述
    • 分析股票价格与粉丝占比之间的关系,帮助用户了解投资者关注度对股价的影响。
  • 技术实现
    • 使用 ECharts 的散点图或折线图展示两者关系。
    • 数据来源于用户关注行为记录和股票价格数据,存储在 MySQL 数据库中。
(11)股价变动热力图
  • 功能描述
    • 使用热力图展示股票价格在不同时间段内的变动情况,颜色深浅表示价格变化幅度。
    • 帮助用户快速识别价格波动较大的时间段。
  • 技术实现
    • 使用 ECharts 的热力图组件。
    • 数据从 MySQL 数据库中提取,通过 Flask 后端接口传递到前端页面。
(12)榜单列表数据管理
  • 功能描述
    • 提供股票榜单(如涨幅榜、跌幅榜、市值榜等)的管理和展示。
    • 用户可以查看不同榜单的股票信息。
  • 技术实现
    • 使用 HTML 和 Flask 框架构建榜单页面。
    • 数据从 MySQL 数据库中提取,通过 Flask 后端接口传递到前端页面。
(13)股票数据管理
  • 功能描述
    • 提供股票数据的管理功能,包括数据录入、更新、删除等操作。
    • 管理员可以通过该模块维护股票数据的准确性。
  • 技术实现
    • 使用 Flask 框架构建数据管理页面。
    • 数据存储在 MySQL 数据库中,通过 Flask 后端进行数据操作。
(14)注册登录
  • 功能描述
    • 提供用户注册和登录功能。
    • 用户可以通过用户名和密码登录系统,访问个人中心和其他功能模块。
  • 技术实现
    • 使用 Flask 的用户认证模块(如 Flask-Login)实现用户登录功能。
    • 用户信息存储在 MySQL 数据库中,通过 Flask 后端进行数据验证和管理。

4、核心代码


def predict_stock_prices(data, steps):
    # Prepare data for modeling
    data['date'] = pd.to_datetime(data['date'])
    data.set_index('date', inplace=True)

    # Simple linear regression (replace with actual prediction logic)
    X = np.array(range(len(data))).reshape(-1, 1)
    y = data['price'].values

    model = LinearRegression()
    model.fit(X, y)

    # Predict the next 'steps' days
    future_days = np.array(range(len(data), len(data) + steps)).reshape(-1, 1)
    future_predictions = model.predict(future_days)

    # Create a date range for future days
    future_dates = pd.date_range(data.index[-1], periods=steps + 1, freq='D')[1:]

    # Create a DataFrame for predictions
    predictions = pd.DataFrame(future_predictions, index=future_dates, columns=['predicted_price'])

    return predictions

@app.route("/predict_stock", methods=["GET", "POST"])
def predict_stock():
    if request.method == "POST":
        stock_name = request.form['stock_name']
        steps = int(request.form.get('steps', 30))  # Default 30 days prediction

        try:
            # Retrieve stock data from the database
            stock_data = StockRanking.query.filter_by(stock_name=stock_name).order_by(StockRanking.id.asc()).all()

            if not stock_data:
                return jsonify({'success': False, 'error': 'No data found for the given stock name'})

            # Prepare the data for prediction (mock dates and prices)
            data = pd.DataFrame([{
                'date': str(stock.id),  # Use 'id' or real date if available
                'price': stock.latest_price
            } for stock in stock_data])

            # Run the prediction model
            predictions = predict_stock_prices(data, steps)

            # Format the predictions for response
            predictions_dict = {
                'dates': predictions.index.strftime('%Y-%m-%d').tolist(),
                'prices': predictions['predicted_price'].tolist()
            }

            return jsonify({'success': True, 'predictions': predictions_dict, 'stock_name': stock_name})

        except Exception as e:
            return jsonify({'success': False, 'error': str(e)})

    return render_template('predict_stock.html')


# Endpoint to suggest stocks based on user input (fuzzy matching)
@app.route("/suggest_stock", methods=["GET"])
def suggest_stock():
    query = request.args.get('query', '')
    if not query:
        return jsonify({'success': False, 'message': 'Query is empty'})

    # Example: Assuming StockRanking model and it has 'stock_name' field
    stock_suggestions = StockRanking.query.filter(StockRanking.stock_name.like(f"%{query}%")).all()

    if not stock_suggestions:
        return jsonify({'success': False, 'message': 'No matching stocks found'})

    # Return stock name suggestions
    suggestions = [{'name': stock.stock_name} for stock in stock_suggestions]

    return jsonify({'success': True, 'suggestions': suggestions})


if __name__ == "__main__":
    app.run(host='127.0.0.1', port=5000)

5、源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,查看我的【用户名】、【专栏名称】、【顶部选题链接】就可以找到我啦🍅

感兴趣的可以先收藏起来,点赞、关注不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值