大数据毕业设计:汽车销量分析预测系统 评论情感分析 爬虫 朴素贝叶斯分类(源码)✅

博主介绍:✌全网粉丝10W+,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业毕业设计项目实战6年之久,选择我们就是选择放心、选择安心毕业✌感兴趣的可以先收藏起来,点赞、关注不迷路✌

毕业设计:2023-2024年计算机毕业设计1000套(建议收藏)

毕业设计:2023-2024年最新最全计算机专业毕业设计选题汇总

1、项目介绍

技术栈:

Flask框架、requests爬虫、线性回归预测算法、Echarts可视化、情感分析、朴素贝叶斯分类器

2、项目界面

(1)销量统计分析可视化

在这里插入图片描述

(2)行驶里程与价格的关系
在这里插入图片描述

(3)汽车销售数据

在这里插入图片描述

(4)收入预测—机器学习线性回归预测算法

在这里插入图片描述

(5)汽车评论数据

在这里插入图片描述

(6)后台数据管理

在这里插入图片描述

(7)注册登录界面

在这里插入图片描述

3、项目说明

汽车数据分析系统是一个功能强大的数据分析平台,结合了Flask框架、requests爬虫、线性回归预测算法、Echarts可视化、情感分析以及朴素贝叶斯分类器等先进技术。

该系统利用Flask框架构建高效、稳定的后端服务,处理汽车相关的数据请求。通过requests爬虫,系统能够自动从各大汽车网站抓取最新的销售数据、用户评价等,为分析提供丰富的数据源。

在线性回归预测算法的支持下,系统能够预测汽车销量、价格趋势等,帮助企业做出更明智的决策。情感分析技术则用于分析用户对汽车的评价,识别出用户对产品的喜好和不满,从而指导产品改进。

朴素贝叶斯分类器则用于对用户评价进行自动分类,如“正面评价”、“负面评价”等,帮助企业快速了解用户反馈的整体情况。

Echarts可视化技术将这些复杂的数据和分析结果以直观、易懂的图表形式展现出来,让决策者能够迅速掌握市场动态和用户需求。

综上所述,汽车数据分析系统是一个集数据抓取、处理、分析和可视化于一体的智能平台,为汽车行业的决策提供有力支持。

4、核心代码


# coding:utf-8
import nltk
# nltk.download()
import nltk.classify.util
from nltk.classify import NaiveBayesClassifier
from nltk.corpus import movie_reviews
import jieba
import models


# 分析句子的情感:情感分析是NLP最受欢迎的应用之一。情感分析是指确定一段给定的文本是积极还是消极的过程。
# 有一些场景中,我们还会将“中性“作为第三个选项。情感分析常用于发现人们对于一个特定主题的看法。


# 定义一个用于提取特征的函数
# 输入一段文本返回形如:{'It': True, 'movie': True, 'amazing': True, 'is': True, 'an': True}
# 返回类型是一个dict
def extract_features(word_list):
    return dict([(word, True) for word in word_list])


def stopwordslist():
    stopwords = [line.strip() for line in open('stopwords.txt', 'r', encoding='utf-8').readlines()]
    return stopwords


# 我们需要训练数据,这里将用NLTK提供的评论数据
if __name__ == '__main__':
    # 加载积极与消极评论
    # positive_fileids = movie_reviews.fileids('pos')  # list类型 1000条数据 每一条是一个txt文件
    # negative_fileids = movie_reviews.fileids('neg')
    # print(type(positive_fileids), len(negative_fileids))

    # 将这些评论数据分成积极评论和消极评论
    # movie_reviews.words(fileids=[f])表示每一个txt文本里面的内容,结果是单词的列表:['films', 'adapted', 'from', 'comic', 'books', 'have', ...]
    # features_positive 结果为一个list
    # 结果形如:[({'shakesp: True, 'limit': True, 'mouth': True, ..., 'such': True, 'prophetic': True}, 'Positive'), ..., ({...}, 'Positive'), ...]
    features_positive = []
    with open('positive.txt', 'r', encoding='utf-8')as f:
        results = f.readlines()
    for f in results:
        # print(({f.strip():True}, 'Positive'))
        features_positive.append(({f.strip(): True}, 'Positive'))
    features_negative = []
    with open('negative.txt', 'r', encoding='utf-8')as f:
        results = f.readlines()
    for f in results:
        # print(({f.strip():True}, 'Positive'))
        features_negative.append(({f.strip(): True}, 'Negative'))

    # 分成训练数据集(80%)和测试数据集(20%)
    threshold_factor = 0.8
    threshold_positive = int(threshold_factor * len(features_positive))  # 800
    threshold_negative = int(threshold_factor * len(features_negative))  # 800
    # 提取特征 800个积极文本800个消极文本构成训练集  200+200构成测试文本
    features_train = features_positive[:threshold_positive] + features_negative[:threshold_negative]
    features_test = features_positive[threshold_positive:] + features_negative[threshold_negative:]
    print("\n训练数据点的数量:", len(features_train))
    print("测试数据点的数量:", len(features_test))

    # 训练朴素贝叶斯分类器
    classifier = NaiveBayesClassifier.train(features_train)
    print("\n分类器的准确性:", nltk.classify.util.accuracy(classifier, features_test))

    print("\n十大信息最丰富的单词:")
    for item in classifier.most_informative_features()[:10]:
        print(item[0])

    # 输入一些简单的评论
    input_reviews = [
        "XXX",
    ]

    datas = models.PingLun.query.all()

    # 运行分类器,获得预测结果
    print("\n预测:")
    stopwords = stopwordslist()  # 这里加载停用词的路径
    for review1 in datas:
        review = review1.content
        segtmp = jieba.lcut(review, cut_all=False)  # 把句子进行分词,以列表的形式返回
        outstr = []
        for word in segtmp:
            if word not in stopwords:
                if word != '\t':
                    if word != ' ' and word != '\n':
                        outstr.append(word.strip())
        print("\n评论:", review)
        probdist = classifier.prob_classify(extract_features(outstr))
        pred_sentiment = probdist.max()
        # 打印输出
        print("预测情绪:", pred_sentiment)
        print("可能性:", round(probdist.prob(pred_sentiment), 2))
        review1.status = pred_sentiment
        models.db.session.commit()

5、源码获取

🍅由于篇幅限制,获取完整文章或源码、代做项目的,查看我的【用户名】、【专栏名称】、【顶部选题链接】就可以找到我啦🍅

感兴趣的可以先收藏起来,点赞、关注不迷路,下方查看👇🏻获取联系方式👇🏻

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值