【概率论】期中复习笔记(上):随机事件与概率、随机变量及其概率分布

第一章 随机事件与概率

1. 几个基本概念

随机现象:在一定条件下可能发生也可能不发生的现象

随机试验( E 1 , E 2 , ⋯ E_1,E_2,\cdots E1,E2,):
(1) 可以在相同条件下重复进行
(2) 每次试验可能的结果不止一个,但事先能明确所有可能的结果
(3) 进行一次试验之前不能肯定哪一次结果会出现

样本空间( Ω \Omega Ω):随机试验 E E E的所有可能试验结果的集合
样本点:样本空间的元素/试验结果

事件( A , B , ⋯ A,B,\cdots A,B,):样本空间的子集
事件 A A A发生当且仅当 A A A中的一个样本点出现

必然事件: Ω \Omega Ω(因为试验 E E E必定有结果,而结果只能在 Ω \Omega Ω里面,所以 Ω \Omega Ω是必然事件)
不可能事件: ∅ \emptyset

连续掷两个骰子,观察其点数之和,若出现首次7点或8点,则试验结束。样本空间 Ω = { ( i 1 , i 2 , ⋯   , i n ) ∣ i n ∈ { 7 , 8 } ; i 1 , i 2 , ⋯   , i n − 1 ∉ { 7 , 8 } ; n = 1 , 2 , ⋯   } \Omega=\{(i_1,i_2,\cdots,i_n)|i_n\in\{7,8\};i_1,i_2,\cdots,i_{n-1}\notin\{7,8\};n=1,2,\cdots\} Ω={(i1,i2,,in)in{7,8};i1,i2,,in1/{7,8};n=1,2,}

2. 事件的关系与运算

A ⊂ B A\subset B AB A A A发生必然导致 B B B发生
A = B A=B A=B A ⊂ B A\subset B AB B ⊂ A B\subset A BA

A A A B B B的和事件: A ∪ B = { A , B 中至少有一个发生 } A\cup B=\{A,B\text{中至少有一个发生}\} AB={A,B中至少有一个发生}
A A A B B B的积事件: A ∩ B = { A , B 都发生 } A\cap B=\{A,B\text{都发生}\} AB={A,B都发生}
A A A B B B是互斥的/互不相容的: A , B A,B A,B不能同时发生, A B = ∅ AB=\emptyset AB=

A A A的对立事件: A ˉ = { A 不发生 } \bar A=\{A\text{不发生}\} Aˉ={A不发生}
A A ˉ = ∅ A\bar A=\emptyset AAˉ= A ∪ A ˉ = Ω A\cup\bar A=\Omega AAˉ=Ω

A A A B B B的差事件: A − B = { A 发生 , B 不发生 } A-B=\{A\text{发生},B\text{不发生}\} AB={A发生,B不发生}
A − B = A B ˉ A-B=A\bar B AB=ABˉ

事件的运算定律:
(1) 交换律 A ∪ B = B ∪ A A\cup B=B\cup A AB=BA A B = B A AB=BA AB=BA
(2) 结合律 ( A ∪ B ) ∪ C = A ∪ ( B ∪ C ) (A\cup B)\cup C=A\cup(B\cup C) (AB)C=A(BC) ( A B ) C = A ( B C ) (AB)C=A(BC) (AB)C=A(BC)
(3) 分配律 ( A ∪ B ) C = ( A C ) ∪ ( B C ) (A\cup B)C=(AC)\cup(BC) (AB)C=(AC)(BC) ( A B ) ∪ C = ( A ∪ C ) ( B ∪ C ) (AB)\cup C=(A\cup C)(B\cup C) (AB)C=(AC)(BC)
(4) 对欧律(德·摩根律) A ∪ B ‾ = A ˉ B ˉ \overline{A\cup B}=\bar A\bar B AB=AˉBˉ A B ‾ = A ˉ ∪ B ˉ \overline{AB}=\bar A\cup\bar B AB=AˉBˉ

3. 概率的三种定义

(1) 古典定义

古典概型:要求试验满足
① 只有有限个试验结果
② 每次试验结果在一次试验中发生的可能性相等

P ( A ) = A 所包含的实验结果的个数 试验结果的总数 P(A)=\frac{A\text{所包含的实验结果的个数}}{试验结果的总数} P(A)=试验结果的总数A所包含的实验结果的个数

关键是结果个数和结果总数的计算。方法:

  • 排列组合公式( A n m = n ! ( n − m ) ! A_n^m=\frac{n!}{(n-m)!} Anm=(nm)!n! C n m = n ! m ! ( n − m ) ! C_n^m=\frac{n!}{m!(n-m)!} Cnm=m!(nm)!n!
  • 加法原理
  • 乘法原理
  • 容斥原理
  • 多重集的组合( n n n个元素有 m m m种状态,处于第 1 , 2 , ⋯   , m 1,2,\cdots,m 1,2,,m种状态的元素个数分别为 n 1 , n 2 , ⋯   , n m n_1,n_2,\cdots,n_m n1,n2,,nm种,则组合方式有 ( n n 1   n 2   ⋯ n m ) = n ! n 1 ! n 2 ! ⋯ n m ! \binom{n}{n_1\ n_2\ \cdots n_m}=\frac{n!}{n_1!n_2!\cdots n_m!} (n1 n2 nmn)=n1!n2!nm!n!种)

N N N件产品中有次品 M M M件,任取 n n n件产品,问其中恰有 m m m件次品的概率。
:结果总数为所有取法的个数: C N n C_N^n CNn。恰有 m m m件次品的结果总数为 C M m C N − M n − M C_M^mC_{N-M}^{n-M} CMmCNMnM M M M件次品中取 m m m件, N − M N-M NM件合格品中取剩下的 n − m n-m nm件)。故恰有 m m m件次品的概率为 C M m C N − M n − m C N n \frac{C_M^mC_{N-M}^{n-m}}{C_N^n} CNnCMmCNMnm

几何概型:设某试验的样本空间为有界区域 Ω \Omega Ω,若样本点落入 Ω \Omega Ω的任何子域中的机会与该子域的度量成正比,而与其位置及形状无关,则样本点落入子域 A ( A ⊂ Ω ) A(A\subset\Omega) A(AΩ)的概率 P ( A ) P(A) P(A)被定义为 P ( A ) = A 的度量 Ω 的度量 P(A)=\frac{A\text{的度量}}{\Omega\text{的度量}} P(A)=Ω的度量A的度量,其中 Ω 的度量 > 0 \Omega\text{的度量}>0 Ω的度量>0

(2) 统计定义

将随机试验 E E E在相同条件下重复进行了 n n n次,
事件 A A A发生的次数 n A n_A nA—— A A A发生的频数,
A A A发生的频率: f n ( A ) = n A A f_n(A)=\frac{n_A}A fn(A)=AnA
若当 n n n充分大时, f n ( A ) f_n(A) fn(A)在常数 p p p附近波动——称 p p p为事件 A A A发生的概率,记作 P ( A ) = p P(A)=p P(A)=p

(3) 公理化定义

设:

  • E E E:随机试验
  • Ω \Omega Ω E E E的样本空间
  • 事件域 F \mathscr F F Ω \Omega Ω中满足一定条件的事件
  • 集合函数 P ( A ) P(A) P(A)

P ( ⋅ ) P(\cdot) P()满足:
① 非负性 ∀ A ∈ F \forall A\in\mathscr F AF P ( A ) ≥ 0 P(A)\ge0 P(A)0
② 规范性 P ( Ω ) = 1 P(\Omega)=1 P(Ω)=1
③ 可列可加性 设 A i ∈ F ( i = 1 , 2 , ⋯   ) A_i\in\mathscr F(i=1,2,\cdots) AiF(i=1,2,),且 A i A j = ∅ A_iA_j=\emptyset AiAj= ∀ i ≠ j \forall i\ne j i=j,有 P ( A 1 ∪ A 2 ∪ ⋯   ) = P ( A 1 ) + P ( A 2 ) + ⋯ P(A_1\cup A_2\cup\cdots)=P(A_1)+P(A_2)+\cdots P(A1A2)=P(A1)+P(A2)+

4. 概率的性质

(1) P ( ∅ ) = 0 P(\emptyset)=0 P()=0
(2)(概率的加法定理) 若 A 1 , A 2 , ⋯   , A n A_1,A_2,\cdots,A_n A1,A2,,An两两互斥,则 P ( A 1 ∪ A 2 ∪ ⋯ ∪ A n ) = P ( A 1 ) + P ( A 2 ) + ⋯ + P ( A n ) P(A_1\cup A_2\cup\cdots\cup A_n)=P(A_1)+P(A_2)+\cdots+P(A_n) P(A1A2An)=P(A1)+P(A2)++P(An)
推广: P ( ⋃ i = 1 n A i ) = ∑ i = 1 n P ( A i ) − ∑ 1 ≤ i < j ≤ n P ( A i A j ) + ⋯ + ( − 1 ) n P ( A 1 A 2 ⋯ A n ) P\left(\bigcup\limits_{i=1}^nA_i\right)=\sum\limits_{i=1}^nP(A_i)-\sum\limits_{1\le i<j\le n}P(A_iA_j)+\cdots+(-1)^nP(A_1A_2\cdots A_n) P(i=1nAi)=i=1nP(Ai)1i<jnP(AiAj)++(1)nP(A1A2An)(规律:加奇减偶)
(3) 若 A ⊂ B A\subset B AB,则 P ( B − A ) = P ( B ) − P ( A ) P(B-A)=P(B)-P(A) P(BA)=P(B)P(A),且 P ( B ) ≥ P ( A ) P(B)\ge P(A) P(B)P(A)
(4) P ( A ˉ ) = 1 − P ( A ) P(\bar A)=1-P(A) P(Aˉ)=1P(A)
(5) P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B ) P(A\cup B)=P(A)+P(B)-P(A\cap B) P(AB)=P(A)+P(B)P(AB)
(6)(概率的连续性) 设 { A n , n = 1 , 2 , ⋯   } \{A_n,n=1,2,\cdots\} {An,n=1,2,}为事件列,若 A n ⊂ A n + 1 , n = 1 , 2 , ⋯ A_n\subset A_{n+1},n=1,2,\cdots AnAn+1,n=1,2,,令 A = ⋃ i = 1 ∞ A i A=\bigcup\limits_{i=1}^\infty A_i A=i=1Ai,则 P ( A ) = lim ⁡ n → ∞ P ( A n ) P(A)=\lim\limits_{n\to\infty}P(A_n) P(A)=nlimP(An)

5. 条件概率、事件的相互独立性

条件概率:设 A , B A,B A,B为两个事件, P ( B ) ≠ 0 P(B)\ne0 P(B)=0,事件 B B B发生的条件下事件 A A A发生的条件概率 P ( A ∣ B ) = P ( A B ) P ( B ) P(A|B)=\frac{P(AB)}{P(B)} P(AB)=P(B)P(AB)

乘法公式:

  • P ( B ) > 0 P(B)>0 P(B)>0,则 P ( A B ) = P ( B ) P ( A ∣ B ) P(AB)=P(B)P(A|B) P(AB)=P(B)P(AB)
  • P ( A B ) ≥ 0 P(AB)\ge0 P(AB)0,则 P ( A B C ) = P ( A ) P ( B ∣ A ) P ( C ∣ A B ) P(ABC)=P(A)P(B|A)P(C|AB) P(ABC)=P(A)P(BA)P(CAB)

互斥完备事件群/互不相容完备事件组:若事件 B 1 , B 2 , ⋯   , B n , ⋯ B_1,B_2,\cdots,B_n,\cdots B1,B2,,Bn,满足
(1) B i B j ≠ ∅ B_iB_j\ne\emptyset BiBj= i ≠ j i\ne j i=j i , j = 1 , 2 , ⋯ i,j=1,2,\cdots i,j=1,2,
(2) B 1 ∪ B 2 ∪ ⋯ ∪ B n ∪ ⋯ = Ω B_1\cup B_2\cup\cdots\cup B_n\cup\cdots=\Omega B1B2Bn=Ω

全概率公式:设 B 1 , B 2 , ⋯   , B n , ⋯ B_1,B_2,\cdots,B_n,\cdots B1,B2,,Bn,是互斥完备事件群,且 P ( B i ) > 0 P(B_i)>0 P(Bi)>0 i = 1 , 2 , ⋯ i=1,2,\cdots i=1,2,), A A A为任意事件,则 P ( A ) = ∑ j P ( B j ) P ( A ∣ B j ) P(A)=\sum\limits_jP(B_j)P(A|B_j) P(A)=jP(Bj)P(ABj)

贝叶斯公式:(条件同上)若还有 P ( A ) > 0 P(A)>0 P(A)>0,则 P ( B i ∣ A ) = P ( B i ) P ( A ∣ B i ) P ( A ) = P ( B i ) P ( A ∣ B i ) ∑ j P ( B j ) P ( A ∣ B j ) P(B_i|A)=\frac{P(B_i)P(A|B_i)}{P(A)}=\frac{P(B_i)P(A|B_i)}{\sum\limits_jP(B_j)P(A|B_j)} P(BiA)=P(A)P(Bi)P(ABi)=jP(Bj)P(ABj)P(Bi)P(ABi)
其中 P ( B i ) P(B_i) P(Bi)称为先验概率, P ( B i ∣ A ) P(B_i|A) P(BiA)称为后验概率

事件 A , B A,B A,B独立: P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B)

若四对事件 { A , B } , { A , B ˉ } , { A ˉ , B } , { A ˉ , B ˉ } \{A,B\},\{A,\bar B\},\{\bar A, B\},\{\bar A,\bar B\} {A,B},{A,Bˉ},{Aˉ,B},{Aˉ,Bˉ}中有一对是相互独立的,则另外三对也是相互独立的

n n n个事件相互独立:设 A 1 , A 2 , ⋯   , A n A_1,A_2,\cdots,A_n A1,A2,,An n n n个事件,若从中任选 k k k个事件 A i 1 , A i 2 , ⋯   , A i k A_{i_1},A_{i_2},\cdots,A_{i_k} Ai1,Ai2,,Aik都有 P ( A i 1 A i 2 ⋯ A i k ) = P ( A i 1 ) P ( A i 2 ) ⋯ P ( A i k ) P(A_{i_1}A_{i_2}\cdots A_{i_k})=P(A_{i_1})P(A_{i_2})\cdots P(A_{i_k}) P(Ai1Ai2Aik)=P(Ai1)P(Ai2)P(Aik)成立,则称事件 A 1 , A 2 , ⋯   , A n A_1,A_2,\cdots,A_n A1,A2,,An相互独立

n n n个事件相互独立,把其中任意 m m m个事件换成其对立事件,所得的 n n n个事件仍相互独立

A 1 , A 2 , ⋯   , A n A_1,A_2,\cdots,A_n A1,A2,,An相互独立,则 P ( A 1 A 2 ⋯ A n ) = P ( A 1 ) P ( A 2 ) ⋯ P ( A n ) P(A_1A_2\cdots A_n)=P(A_1)P(A_2)\cdots P(A_n) P(A1A2An)=P(A1)P(A2)P(An) P ( A 1 ∪ A 2 ∪ ⋯ ∪ A n ) = 1 − P ( A 1 ˉ A 2 ˉ ⋯ A n ˉ ) = 1 − P ( A 1 ˉ ) P ( A 2 ˉ ) ⋯ P ( A n ˉ ) P(A_1\cup A_2\cup\cdots\cup A_n)=1-P(\bar{A_1}\bar{A_2}\cdots\bar{A_n})=1-P(\bar{A_1})P(\bar{A_2})\cdots P(\bar{A_n}) P(A1A2An)=1P(A1ˉA2ˉAnˉ)=1P(A1ˉ)P(A2ˉ)P(Anˉ)

第二章 随机变量及其概率分布

1. 随机变量及其分布函数

随机变量 X X X:设 E E E为一随机试验, Ω \Omega Ω为其样本空间,若:

  • X = X ( ω ) X=X(\omega) X=X(ω) ω ∈ Ω \omega\in\Omega ωΩ为一单值实函数
  • ∀ x ∈ R \forall x\in\mathbb R xR,集合 { ω ∣ X ( ω ) ≤ x } \{\omega|X(\omega)\le x\} {ωX(ω)x}都是随机事件,则称 X X X为随机变量。

随机变量 X X X的分布函数:设 X X X是一随机变量,称 F ( x ) = P { X ≤ x } , x ∈ R F(x)=P\{X\le x\},x\in\mathbb R F(x)=P{Xx},xR为随机变量 X X X的分布函数。 P { x ∈ ( a , b ] } = P ( a < x ≤ b ) = F ( b ) − F ( a ) P\{x\in(a,b]\}=P(a<x\le b)=F(b)-F(a) P{x(a,b]}=P(a<xb)=F(b)F(a)

分布函数的基本性质:
(1) 单调增;
(2) 右连续;
(3) ∀ x ∈ R \forall x\in\mathbb R xR 0 ≤ F ( x ) ≤ 1 0\le F(x)\le 1 0F(x)1 F ( − ∞ ) = lim ⁡ x → − ∞ F ( x ) = 0 , F ( + ∞ ) = lim ⁡ x → + ∞ F ( x ) = 1 F(-\infty)=\lim\limits_{x\to-\infty}F(x)=0,F(+\infty)=\lim\limits_{x\to+\infty}F(x)=1 F()=xlimF(x)=0,F(+)=x+limF(x)=1
一个函数满足以上性质    ⟹    \implies 该函数是某个随机变量的分布函数。

2. 离散型随机变量及其分布律

离散型随机变量 X X X X X X的所有可能取值为有限个或可数个(可数个就是说可能取值的集合的势为 ℵ 0 \aleph_0 0

离散型随机变量 X X X的分布律/概率函数: p k = P { X = x k } , k = 1 , 2 , ⋯ p_k=P\{X=x_k\},k=1,2,\cdots pk=P{X=xk},k=1,2,
写作: X ~ ( x 1 x 2 ⋯ x n ⋯ p 1 p 2 ⋯ p n ⋯ ) X\text{\large\textasciitilde}\left(\begin{array}{l}x_1&x_2&\cdots&x_n&\cdots\\p_1&p_2&\cdots &p_n&\cdots\end{array}\right) X~(x1p1x2p2xnpn)
分布律的性质:(1) p k ≥ 0 , k = 1 , 2 , ⋯ p_k\ge0,k=1,2,\cdots pk0,k=1,2,;(2) ∑ k = 1 ∞ p k = 1 \sum\limits_{k=1}^\infty p_k=1 k=1pk=1

离散型随机变量的分布函数: F ( x ) = P { X ≤ x } = ∑ x k ≤ x P { X = x k } = ∑ x k ≤ x p k F(x)=P\{X\le x\}=\sum\limits_{x_k\le x}P\{X=x_k\}=\sum\limits_{x_k\le x}p_k F(x)=P{Xx}=xkxP{X=xk}=xkxpk

常见的几种离散型随机变量及其分布律:

(1) 单点分布 ( a 1 ) \binom a1 (1a) P { X = a } = 1 P\{X=a\}=1 P{X=a}=1

(2) 两点分布: P { X = a 0 } = { 1 − p , x = a 0 p , x = a 1 = p i ( 1 − p ) 1 − i , i = 0 , 1 P\{X=a_0\}=\begin{cases}1-p,&x=a_0\\p,&x=a_1\end{cases}=p^i(1-p)^{1-i},i=0,1 P{X=a0}={1p,p,x=a0x=a1=pi(1p)1i,i=0,1

  • (0-1)分布: a 0 = 0 , a 1 = 1 a_0=0,a_1=1 a0=0,a1=1,记作 X ~ B ( 1 , p ) X\text{\large\textasciitilde}B(1,p) X~B(1,p) X ~ ( 0 1 1 − p p ) X\text{\large\textasciitilde}\left(\begin{array}{l}0&1\\1-p&p\end{array}\right) X~(01p1p)

(3) 二项分布 B ( n , p ) B(n,p) B(n,p) P { X = k } = C n k p k ( 1 − p ) 1 − k , k = 0 , 1 , 2 , ⋯   , n P\{X=k\}=C_n^kp^k(1-p)^{1-k},k=0,1,2,\cdots,n P{X=k}=Cnkpk(1p)1k,k=0,1,2,,n,表示:若某事件 A A A在一次试验中发生的概率为 p p p,将此试验独立地重复进行 n n n次(称为 n n n重伯努利试验), X X X——事件 A A A发生的次数的分布律

(4) 泊松分布 P ( λ ) P(\lambda) P(λ) P { X = k } = λ k e − λ k ! , k = 0 , 1 , 2 , ⋯ P\{X=k\}=\frac{\lambda^k e^{-\lambda}}{k!},k=0,1,2,\cdots P{X=k}=k!λkeλ,k=0,1,2,

  • 泊松定理:设随机变量 X n X_n Xn服从二项分布 B ( n , p n ) ( n = 1 , 2 , ⋯   ) B(n,p_n)(n=1,2,\cdots) B(n,pn)(n=1,2,),令 λ = lim ⁡ n → ∞ n p n \lambda=\lim\limits_{n\to\infty}np_n λ=nlimnpn,则 lim ⁡ n → ∞ C n k p n k ( 1 − p n ) n − k = λ k e − λ k ! \lim\limits_{n\to\infty}C_n^kp_n^k(1-p_n)^{n-k}=\frac{\lambda^ke^{-\lambda}}{k!} nlimCnkpnk(1pn)nk=k!λkeλ。即当 n n n足够大时 C n k p n k ( 1 − p n ) n − k ≈ λ k e − λ k ! C_n^kp_n^k(1-p_n)^{n-k}\approx\frac{\lambda^ke^{-\lambda}}{k!} Cnkpnk(1pn)nkk!λkeλ

(5) 几何分布 G e ( p ) Ge(p) Ge(p) P { X = k } = ( 1 − p ) k − 1 p , k = 1 , 2 , 3 , ⋯ P\{X=k\}=(1-p)^{k-1}p,k=1,2,3,\cdots P{X=k}=(1p)k1p,k=1,2,3,,表示 n n n重伯努利试验中事件 A A A首次发生所需的试验次数的分布律

3. 连续型随机变量及其分布

连续型随机变量、概率密度:设 X X X为随机变量,若存在非负可积函数 f ( x ) f(x) f(x),使得对任意区间 A ⊂ R A\subset R AR,都有 P { X ∈ A } = ∫ A f ( x ) d x P\{X\in A\}=\int_A{f(x)\text{d}x} P{XA}=Af(x)dx,则称 X X X为连续型随机变量,并称 f ( x ) f(x) f(x) X X X的概率密度

概率密度的基本性质:(1) ∀ x ∈ R , f ( x ) ≥ 0 \forall x\in\mathbb R,f(x)\ge0 xR,f(x)0;(2) ∫ − ∞ + ∞ f ( x ) d x = 1 \int_{-\infty}^{+\infty}f(x)\text{d}x=1 +f(x)dx=1

连续型随机变量的分布函数: F ( x ) = ∫ − ∞ x f ( t ) d t F(x)=\int_{-\infty}^xf(t)\text{d}t F(x)=xf(t)dt
f ( x ) f(x) f(x)在点 x x x处连续,则有 F ′ ( x ) = f ( x ) F'(x)=f(x) F(x)=f(x)

连续型随机变量取任何实数的概率都是 0 0 0

常见的几种连续型随机变量及其分布律:

(1) 正态分布 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2) f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 , x ∈ R f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}},x\in\mathbb R f(x)=2π σ1e2σ2(xμ)2,xR X X X服从参数为 μ , σ \mu,\sigma μ,σ的正态分布    ⟹    \implies X ~ N ( μ , σ 2 ) X\text{\large\textasciitilde}N(\mu,\sigma^2) X~N(μ,σ2)(称 X X X为正态变量)

标准正态分布: μ = 0 , σ = 1 \mu=0,\sigma=1 μ=0,σ=1,记作 N ( 0 , 1 ) N(0,1) N(0,1),概率密度 ϕ ( x ) = 1 2 π e − x 2 2 , x ∈ R \phi(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}},x\in\mathbb R ϕ(x)=2π 1e2x2,xR;分布函数 Φ ( x ) = ∫ − ∞ x 1 2 π e − t 2 2 d t \Phi(x)=\int_{-\infty}^x\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}\text{d}t Φ(x)=x2π 1e2t2dt

Φ ( − x ) = 1 − Φ ( x ) \Phi(-x)=1-\Phi(x) Φ(x)=1Φ(x)
Φ ( 0 ) = 1 2 \Phi(0)=\frac12 Φ(0)=21
X ~ N ( 0 , 1 ) X\text{\large\textasciitilde}N(0,1) X~N(0,1),则 P { X ≥ x } = Φ ( − x ) P\{X\ge x\}=\Phi(-x) P{Xx}=Φ(x)

X ~ N ( μ , σ 2 ) X\text{\large\textasciitilde}N(\mu,\sigma^2) X~N(μ,σ2),则 Z = X − μ σ ~ N ( 0 , 1 ) Z=\frac{X-\mu}{\sigma}\text{\large\textasciitilde}N(0,1) Z=σXμ~N(0,1)

由此可得一些积分的值:
∫ − ∞ + ∞ e − ( x − μ ) 2 2 σ 2 d x = 2 π σ \int_{-\infty}^{+\infty}e^{-\frac{(x-\mu)^2}{2\sigma^2}}\text{d}x=\sqrt{2\pi}\sigma +e2σ2(xμ)2dx=2π σ
∫ μ + ∞ e − ( x − μ ) 2 2 σ 2 d x = π 2 σ \int_{\mu}^{+\infty}e^{-\frac{(x-\mu)^2}{2\sigma^2}}\text{d}x=\sqrt{\frac\pi2}\sigma μ+e2σ2(xμ)2dx=2π σ
特别地,
∫ − ∞ + ∞ e − x 2 2 d x = 2 π \int_{-\infty}^{+\infty}e^{-\frac{x^2}{2}}\text{d}x=\sqrt{2\pi} +e2x2dx=2π
∫ 0 + ∞ e − x 2 2 d x = π 2 \int_{0}^{+\infty}e^{-\frac{x^2}{2}}\text{d}x=\sqrt{\frac\pi2} 0+e2x2dx=2π

X ~ N ( μ , σ 2 )    ⟹    Y = k X + b ~ N ( k μ + b , k 2 σ 2 ) X\text{\large\textasciitilde}N(\mu,\sigma^2)\implies Y=kX+b\text{\large\textasciitilde}N(k\mu+b,k^2\sigma^2) X~N(μ,σ2)Y=kX+b~N(kμ+b,k2σ2)(其中 k ≠ 0 k\ne0 k=0

(2) 均匀分布 U ( a , b ) ( a < b ) U(a,b)(a<b) U(a,b)(a<b) f ( x ) = { 1 b − a , a ≤ x ≤ b 0 , 其他 f(x)=\begin{cases}\frac{1}{b-a},&a\le x\le b\\0,&\text{其他}\end{cases} f(x)={ba1,0,axb其他,分布函数 F ( x ) = { 0 , x < a x − a b − a , a ≤ x < b 1 , x ≥ b F(x)=\begin{cases}0,&x<a\\\frac{x-a}{b-a},&a\le x<b\\1,&x\ge b\end{cases} F(x)= 0,baxa,1,x<aax<bxb

(3) 指数分布 E x p ( λ ) Exp(\lambda) Exp(λ) f ( x ) = { λ e − λ x , x ≥ 0 0 , x < 0 f(x)=\begin{cases}\lambda e^{-\lambda x},&x\ge0\\0,&x<0\end{cases} f(x)={λeλx,0,x0x<0,分布函数 F ( x ) = { 1 − e − λ x , x ≥ 0 0 , x < 0 F(x)=\begin{cases}1-e^{-\lambda x},&x\ge 0\\0,&x<0\end{cases} F(x)={1eλx,0,x0x<0

X ~ E x p ( λ )    ⟹    ∀ s > 0 , t > 0 , P { X > s + t ∣ X > s } = P { X > t } X\text{\large\textasciitilde}Exp(\lambda)\implies\forall s>0,t>0,P\{X>s+t|X>s\}=P\{X>t\} X~Exp(λ)s>0,t>0,P{X>s+tX>s}=P{X>t}
(指数分布的无记忆性:出生时能活 t t t年和 s s s岁时再活 t t t年概率相同)

4. 随机变量的函数及其概率分布

X X X为随机变量, g ( x ) g(x) g(x)为单值实函数(假设其为连续函数/单调函数/分段单调函数),则 Y = g ( X ) Y=g(X) Y=g(X)仍为随机变量

  • X X X为离散型随机变量    ⟹    \implies Y Y Y也是离散型随机变量

    • 分布律求法:
      • X ~ ( x 1 x 2 ⋯ x n ⋯ p 1 p 2 ⋯ p n ⋯ ) X\text{\large\textasciitilde}\left(\begin{matrix}x_1&x_2&\cdots&x_n&\cdots\\p_1&p_2&\cdots&p_n&\cdots\end{matrix}\right) X~(x1p1x2p2xnpn)
      • 求出所有 x k ( k = 1 , 2 , ⋯   , n , ⋯   ) x_k(k=1,2,\cdots,n,\cdots) xk(k=1,2,,n,)对应的 g ( x k ) g(x_k) g(xk),每个 g ( x k ) g(x_k) g(xk)对应的概率为 p k p_k pk
      • 合并相同的 g ( x k ) g(x_k) g(xk),将对应的 p k p_k pk相加
  • X X X为连续型随机变量    ⟹    \implies Y Y Y可能连续也可能离散

    • Y Y Y离散,求其分布律
    • Y Y Y不离散,求其分布函数: F Y ( y ) = P { Y ≤ y } = P { g ( X ) ≤ y } = ∫ g ( x ) ≤ y f X ( x ) d x F_Y(y)=P\{Y\le y\}=P\{g(X)\le y\}=\int_{g(x)\le y}f_X(x)\text{d}x FY(y)=P{Yy}=P{g(X)y}=g(x)yfX(x)dx(若概率密度存在,对 F Y ( y ) F_Y(y) FY(y)求导即得概率密度 f Y ( y ) = F Y ′ ( y ) f_Y(y)=F'_Y(y) fY(y)=FY(y)
      • Y Y Y连续,可求其概率密度
        • 设随机变量 X X X具有概率密度 f X ( x ) f_X(x) fX(x),若 g ( x ) g(x) g(x) R \mathbb R R上的可导函数,并且恒有 g ′ ( x ) > 0 g'(x)>0 g(x)>0 g ′ ( x ) < 0 g'(x)<0 g(x)<0。记 h ( y ) h(y) h(y) g g g的反函数,则 Y = g ( X ) Y=g(X) Y=g(X)是连续型随机变量,其概率密度为 f Y ( y ) = { f X ( h ( y ) ) ∣ h ′ ( y ) ∣ , y ∈ g ( R ) 0 , 其他 f_Y(y)=\begin{cases}f_X(h(y))|h'(y)|,&y\in g(\mathbb R)\\0,&\text{其他}\end{cases} fY(y)={fX(h(y))h(y),0,yg(R)其他,其中 g ( R ) g(\mathbb R) g(R) g g g的值域
        • f X ( x ) f_X(x) fX(x)在区间 [ a , b ] [a,b] [a,b]外恒为 0 0 0,则把 R \mathbb R R换成 [ a , b ] [a,b] [a,b]依然成立

参考书目

《概率论与数理统计》施雨等编

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值