2022年第十四届全国大学生数学竞赛初赛(补赛)非数类难题集锦

详细解答见知乎文章,这里只讲一讲我印象最深的几道题。

一、(5) 设可微函数 f ( x , y ) f(x,y) f(x,y)对任意 u , v , t u,v,t u,v,t满足 f ( t u , t v ) = t 2 f ( u , v ) f(tu,tv)=t^2f(u,v) f(tu,tv)=t2f(u,v),点 P ( 1 , − 1 , 2 ) P(1,-1,2) P(1,1,2)位于曲面 z = f ( x , y ) z=f(x,y) z=f(x,y)上,又设 f x ( 1 , − 1 ) = 3 f_x(1,-1)=3 fx(1,1)=3(即 ∂ f ∂ x ∣ ( 1 , − 1 ) = 3 \left.\frac{\partial f}{\partial x}\right|_{(1,-1)}=3 xf (1,1)=3),则该曲面在点 P P P处的切面方程为________。

:设曲面为 F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0,其中 F ( x , y , z ) = f ( x , y ) − z F(x,y,z)=f(x,y)-z F(x,y,z)=f(x,y)z,则曲面在点 ( x , y , z ) (x,y,z) (x,y,z)的法向量为 ( F x , F y , F z ) (F_x,F_y,F_z) (Fx,Fy,Fz),其中 F x = f x F_x=f_x Fx=fx F y = f y F_y=f_y Fy=fy F z = − 1 F_z=-1 Fz=1。故点 ( 1 , − 1 , 2 ) (1,-1,2) (1,1,2)处的切面方程为 f x ( 1 , − 1 ) ( x − 1 ) + f y ( 1 , − 1 ) ( y + 1 ) − ( z − 2 ) = 0 f_x(1,-1)(x-1)+f_y(1,-1)(y+1)-(z-2)=0 fx(1,1)(x1)+fy(1,1)(y+1)(z2)=0。现在要求出 f y ( 1 , − 1 ) f_y(1,-1) fy(1,1)

g ( t ) = f ( t u , t v ) − t 2 f ( u , v ) ≡ 0 g(t)=f(tu,tv)-t^2f(u,v)\equiv 0 g(t)=f(tu,tv)t2f(u,v)0,则 g ′ ( t ) ≡ 0 g'(t)\equiv 0 g(t)0。而 g ′ ( t ) = u f x ( t u , t v ) + v f x ( t u , t v ) − 2 t f ( u , v ) g'(t)=uf_x(tu,tv)+vf_x(tu,tv)-2tf(u,v) g(t)=ufx(tu,tv)+vfx(tu,tv)2tf(u,v),故有 u f x ( t u , t v ) + v f y ( t u , t v ) = 2 t f ( u , v ) uf_x(tu,tv)+vf_y(tu,tv)=2tf(u,v) ufx(tu,tv)+vfy(tu,tv)=2tf(u,v),两边同时乘以 t t t t u f x ( t u , t v ) + t v f y ( t u , t v ) = 2 t 2 f ( u , v ) tuf_x(tu,tv)+tvf_y(tu,tv)=2t^2f(u,v) tufx(tu,tv)+tvfy(tu,tv)=2t2f(u,v),其中 2 t 2 f ( u , v ) = 2 f ( t u , t v ) 2t^2f(u,v)=2f(tu,tv) 2t2f(u,v)=2f(tu,tv)。令 x = t u x=tu x=tu y = t v y=tv y=tv,即得 x f x ( x , y ) + y f y ( x , y ) = 2 f ( x , y ) xf_x(x,y)+yf_y(x,y)=2f(x,y) xfx(x,y)+yfy(x,y)=2f(x,y)因此 f y ( 1 , − 1 ) = 2 f ( 1 , − 1 ) − f x ( 1 , − 1 ) − 1 = 4 − 3 − 1 = − 1 f_y(1,-1)=\frac{2f(1,-1)-f_x(1,-1)}{-1}=\frac{4-3}{-1}=-1 fy(1,1)=12f(1,1)fx(1,1)=143=1故切面方程为 3 ( x − 1 ) − ( y + 1 ) − ( z − 2 ) = 0 3(x-1)-(y+1)-(z-2)=0 3(x1)(y+1)(z2)=0,即 3 x − y − z − 2 = 0 3x-y-z-2=0 3xyz2=0

但其实我考场上的想法不是这样的。回顾一下方向导数的定义,设 l \bm{l} l是一个二维向量(即方向),其单位向量 e l = l ∥ l ∥ = ( cos ⁡ α , cos ⁡ β ) \bm{e}_l=\frac{\bm{l}}{\|\bm{l}\|}=(\cos\alpha,\cos\beta) el=ll=(cosα,cosβ),则 f f f在点 x 0 = ( x 0 , y 0 ) \bm{x}_0=(x_0,y_0) x0=(x0,y0)处的方向导数为 ∂ f ∂ l ∣ x 0 = lim ⁡ k → 0 f ( x 0 + k e l ) − f ( x 0 ) k \left.\frac{\partial f}{\partial\bm{l}}\right|_{\bm{x}_0}=\lim\limits_{k\to0}\frac{f(\bm{x}_0+k\bm{e}_l)-f(\bm{x}_0)}{k} lf x0=k0limkf(x0+kel)f(x0)并且 ∂ f ∂ l ∣ x 0 = f x ( x 0 , y 0 ) cos ⁡ α + f y ( x 0 , y 0 ) cos ⁡ β \left.\frac{\partial f}{\partial\bm{l}}\right|_{\bm{x}_0}=f_x(x_0,y_0)\cos\alpha+f_y(x_0,y_0)\cos\beta lf x0=fx(x0,y0)cosα+fy(x0,y0)cosβ x 0 = l = ( u , v ) \bm{x}_0=\bm{l}=(u,v) x0=l=(u,v) t = k + 1 t=k+1 t=k+1,则 cos ⁡ α = u u 2 + v 2 \cos\alpha=\frac{u}{\sqrt{u^2+v^2}} cosα=u2+v2 u cos ⁡ β = v u 2 + v 2 \cos\beta=\frac{v}{\sqrt{u^2+v^2}} cosβ=u2+v2 v,所以有 lim ⁡ t → 1 f ( t x 0 ) − f ( x 0 ) t − 1 = f x ( u , v ) u u 2 + v 2 + f y ( u , v ) v u 2 + v 2 \lim\limits_{t\to1}\frac{f(t\bm{x_0})-f(\bm{x}_0)}{t-1}=f_x(u,v)\frac{u}{\sqrt{u^2+v^2}}+f_y(u,v)\frac{v}{\sqrt{u^2+v^2}} t1limt1f(tx0)f(x0)=fx(u,v)u2+v2 u+fy(u,v)u2+v2 v f ( t x 0 ) = f ( t u , t v ) = t 2 f ( u , v ) f(t\bm{x}_0)=f(tu,tv)=t^2f(u,v) f(tx0)=f(tu,tv)=t2f(u,v),所以等式左边等于 lim ⁡ t → 1 f ( t x 0 ) − f ( x 0 ) t − 1 = lim ⁡ t → 1 ( t 2 − 1 ) f ( u , v ) t − 1 = lim ⁡ t → 1 ( t + 1 ) f ( u , v ) = 2 f ( u , v ) \lim\limits_{t\to1}\frac{f(t\bm{x_0})-f(\bm{x}_0)}{t-1}=\lim\limits_{t\to1}\frac{(t^2-1)f(u,v)}{t-1}=\lim\limits_{t\to1}(t+1)f(u,v)=2f(u,v) t1limt1f(tx0)f(x0)=t1limt1(t21)f(u,v)=t1lim(t+1)f(u,v)=2f(u,v)那么就有 f x ( u , v ) u u 2 + v 2 + f y ( u , v ) v u 2 + v 2 = 2 f ( u , v ) f_x(u,v)\frac{u}{\sqrt{u^2+v^2}}+f_y(u,v)\frac{v}{\sqrt{u^2+v^2}}=2f(u,v) fx(u,v)u2+v2 u+fy(u,v)u2+v2 v=2f(u,v)。令 u = 1 u=1 u=1 v = − 1 v=-1 v=1,就可以解出 f y ( 1 , − 1 ) f_y(1,-1) fy(1,1)了。

三、(2) 这里的难点主要是一个积分 ∫ 0 π 2 cos ⁡ 2 θ sin ⁡ 2 θ ( cos ⁡ 3 θ + sin ⁡ 3 θ ) 2 d θ \int_0^{\pi\over 2}\frac{\cos^2\theta\sin^2\theta}{(\cos^3\theta+\sin^3\theta)^2}\mathrm{d}\theta 02π(cos3θ+sin3θ)2cos2θsin2θdθ可以看到这个式子 cos ⁡ θ \cos\theta cosθ sin ⁡ θ \sin\theta sinθ是齐次的,这就让我们联想到 tan ⁡ θ \tan\theta tanθ。被积函数上下同时除以 cos ⁡ 6 θ \cos^6\theta cos6θ cos ⁡ 2 θ sin ⁡ 2 θ ( cos ⁡ 3 θ + sin ⁡ 3 θ ) 2 = sec ⁡ 2 θ tan ⁡ 2 θ ( 1 + tan ⁡ 3 θ ) 2 \frac{\cos^2\theta\sin^2\theta}{(\cos^3\theta+\sin^3\theta)^2}=\frac{\sec^2\theta\tan^2\theta}{(1+\tan^3\theta)^2} (cos3θ+sin3θ)2cos2θsin2θ=(1+tan3θ)2sec2θtan2θ而我们知道 d ( tan ⁡ θ ) = sec ⁡ 2 θ d θ \mathrm{d}(\tan\theta)=\sec^2\theta\mathrm{d}\theta d(tanθ)=sec2θdθ,故原积分化为 ∫ 0 π 2 cos ⁡ 2 θ sin ⁡ 2 θ ( cos ⁡ 3 θ + sin ⁡ 3 θ ) 2 d θ = ∫ 0 π 2 tan ⁡ 2 θ d ( tan ⁡ θ ) ( 1 + tan ⁡ 3 θ ) 2 = ∫ 0 π 2 1 3 d ( 1 + tan ⁡ 3 θ ) ( 1 + tan ⁡ 3 θ ) 2 = − 1 3 [ 1 ( 1 + tan ⁡ 3 θ ) 2 ] 0 π 2 = − 1 3 ( 0 − 1 ) = 1 3 \begin{aligned} \int_0^{\pi\over 2}\frac{\cos^2\theta\sin^2\theta}{{\left(\cos^3\theta+\sin^3\theta\right)}^2}\mathrm{d}\theta&=\int_0^{\pi\over 2}{\frac{\tan^2\theta\mathrm{d}(\tan\theta)}{{\left(1+\tan^3\theta\right)}^2}}\\ &=\int_0^{\pi\over 2}\frac{1}{3}\frac{\mathrm{d}\left(1+\tan^3\theta\right)}{{\left(1+\tan^3\theta\right)}^2}\\ &=-\frac{1}{3}\left[\frac{1}{{\left(1+\tan^3\theta\right)}^2}\right]_0^{\pi\over 2}\\ &=-\frac{1}{3}(0-1)\\ &=\frac{1}{3} \end{aligned} 02π(cos3θ+sin3θ)2cos2θsin2θdθ=02π(1+tan3θ)2tan2θd(tanθ)=02π31(1+tan3θ)2d(1+tan3θ)=31[(1+tan3θ)21]02π=31(01)=31注意这其实是一个反常积分, lim ⁡ θ → π 2 − tan ⁡ θ = + ∞ \lim\limits_{\theta\to\frac{\pi}{2}^-}\tan\theta=+\infty θ2πlimtanθ=+ lim ⁡ θ → π 2 − 1 1 + tan ⁡ 3 θ = 0 \lim\limits_{\theta\to\frac{\pi}{2}^-}\frac{1}{1+\tan^3\theta}=0 θ2πlim1+tan3θ1=0。∎

四、 证明:当 α > 0 \alpha>0 α>0时, ( 2 α + 2 2 α + 1 ) α + 1 > ( 2 α + 1 2 α ) α \left(\frac{2\alpha+2}{2\alpha+1}\right)^{\sqrt{\alpha+1}}>\left(\frac{2\alpha+1}{2\alpha}\right)^{\sqrt{\alpha}} (2α+12α+2)α+1 >(2α2α+1)α

闲话:个人认为这应该是本次竞赛最难的一道题了,考场上我想证明一个函数 f ( x ) = ( 1 + 1 x ) x 2 f(x)=\left(1+\frac{1}{x}\right)^{\sqrt{\frac{x}{2}}} f(x)=(1+x1)2x 是增函数,结果回到宿舍用电脑画了一下图发现当 x > 0.4 x>0.4 x>0.4左右的时候就开始单调递减了,痛失14分。😢应该是放缩的太过了。

证明:问题就在于如何构造函数。想要构造函数,首先必须把不等式两边尽量化成相似的形式,然后进行观察。注意到 2 α + 2 2 α + 1 = 1 + 1 2 α + 1 \frac{2\alpha+2}{2\alpha+1}=1+\frac{1}{2\alpha+1} 2α+12α+2=1+2α+11 2 α + 1 2 α = 1 + 1 2 α \frac{2\alpha+1}{2\alpha}=1+\frac{1}{2\alpha} 2α2α+1=1+2α1。对于带指数的问题,对不等式等式两边取对数是常见做法。所以问题转化为证明 α + 1 ln ⁡ ( 1 + 1 2 α + 1 ) > α ( 1 + 1 2 α ) \sqrt{\alpha+1}\ln\left(1+\frac{1}{2\alpha+1}\right)>\sqrt{\alpha}\left(1+\frac{1}{2\alpha}\right) α+1 ln(1+2α+11)>α (1+2α1)看到分母有 2 2 2,我们自然想让根号下面也有 2 2 2,使得形式更加协调。两边同时乘以 2 \sqrt{2} 2 2 α + 2 ln ⁡ ( 1 + 1 2 α + 1 ) > 2 α ( 1 + 1 2 α ) \sqrt{2\alpha+2}\ln\left(1+\frac{1}{2\alpha+1}\right)>\sqrt{2\alpha}\left(1+\frac{1}{2\alpha}\right) 2α+2 ln(1+2α+11)>2α (1+2α1)好了,现在已经有些眉目了,不过还有一个问题—— 2 α + 2 2\alpha+2 2α+2 2 α 2\alpha 2α之间有个断层。怎么办呢?就用 2 α + 1 2\alpha+1 2α+1作为桥梁,把它们连接起来。两边同时乘以 2 α + 1 \sqrt{2\alpha+1} 2α+1 2 α + 2 2 α + 1 ln ⁡ ( 1 + 1 2 α + 1 ) > 2 α + 1 2 α ( 1 + 1 2 α ) \sqrt{2\alpha+2}\sqrt{2\alpha+1}\ln\left(1+\frac{1}{2\alpha+1}\right)>\sqrt{2\alpha+1}\sqrt{2\alpha}\left(1+\frac{1}{2\alpha}\right) 2α+2 2α+1 ln(1+2α+11)>2α+1 2α (1+2α1)非常漂亮,两边已经具有完全相同的形式了。但这道题的坑点在于,如果接下来直接构造函数 f ( x ) = ( x + 1 ) x ln ⁡ ( 1 + 1 x ) f(x)=\sqrt{(x+1)x}\ln\left(1+\frac{1}{x}\right) f(x)=(x+1)x ln(1+x1),那么求导会非常复杂,而且当 x → 0 + x\to 0^+ x0+ ln ⁡ ( 1 + 1 x ) → + ∞ \ln\left(1+\frac{1}{x}\right)\to+\infty ln(1+x1)+,十分棘手。所以我们不希望 ln ⁡ \ln ln里面出现 1 x \frac{1}{x} x1。也就是说,在将关于 α \alpha α的式子代入 x x x的时候,我们希望代入的是 1 2 α + 1 \frac{1}{2\alpha+1} 2α+11 1 2 α \frac{1}{2\alpha} 2α1,而不是 2 α + 1 2\alpha+1 2α+1 2 α 2\alpha 2α。所以式子必须继续变形:不等式两边分别把 2 α + 1 2\alpha+1 2α+1 2 α 2\alpha 2α除到分母里面得 2 α + 2 2 α + 1 ln ⁡ ( 1 + 1 2 α + 1 ) 1 2 α + 1 > 2 α + 1 2 α ( 1 + 1 2 α ) 1 2 α \frac{\sqrt{\frac{2\alpha+2}{2\alpha+1}}\ln\left(1+\frac{1}{2\alpha+1}\right)}{\frac{1}{2\alpha+1}}>\frac{\sqrt{\frac{2\alpha+1}{2\alpha}}\left(1+\frac{1}{2\alpha}\right)}{\frac{1}{2\alpha}} 2α+112α+12α+2 ln(1+2α+11)>2α12α2α+1 (1+2α1) 1 + 1 2 α + 1 ln ⁡ ( 1 + 1 2 α + 1 ) 1 2 α + 1 > 1 + 1 2 α ( 1 + 1 2 α ) 1 2 α \frac{\sqrt{1+\frac{1}{2\alpha+1}}\ln\left(1+\frac{1}{2\alpha+1}\right)}{\frac{1}{2\alpha+1}}>\frac{\sqrt{1+\frac{1}{2\alpha}}\left(1+\frac{1}{2\alpha}\right)}{\frac{1}{2\alpha}} 2α+111+2α+11 ln(1+2α+11)>2α11+2α1 (1+2α1)虽然可以一开始直接除以 2 α + 1 \sqrt{2\alpha+1} 2α+1 ,但我这里是想演示一种错误的解法,有的时候看懂答案和自己推出答案是两回事。我们费尽了九牛二虎之力,终于可以开始构造函数了。注意,到目前为止我们进行的都是恒等变形,所以这次我们是一定能成功的。 f ( x ) = 1 + x ln ⁡ ( 1 + x ) x f(x)=\frac{\sqrt{1+x}\ln(1+x)}{x} f(x)=x1+x ln(1+x),则不等式左边是 f ( 1 2 α + 1 ) f\left(\frac{1}{2\alpha+1}\right) f(2α+11),右边是 f ( 1 2 α ) f\left(\frac{1}{2\alpha}\right) f(2α1)。只需证 f ( x ) f(x) f(x) ( 0 , + ∞ ) (0,+\infty) (0,+)上是减函数。对 f ( x ) f(x) f(x)求导得 f ′ ( x ) = x [ 1 2 1 + x ln ⁡ ( 1 + x ) + 1 + x 1 1 + x ] − 1 + x ln ⁡ ( 1 + x ) x 2 = x − ( x 2 + 1 ) ln ⁡ ( 1 + x ) x 2 1 + x \begin{aligned} f'(x)&=\frac{x\left[\frac{1}{2\sqrt{1+x}}\ln(1+x)+\sqrt{1+x}\frac{1}{1+x}\right]-\sqrt{1+x}\ln(1+x)}{x^2}\\ &=\frac{x-\left(\frac{x}{2}+1\right)\ln(1+x)}{x^2\sqrt{1+x}} \end{aligned} f(x)=x2x[21+x 1ln(1+x)+1+x 1+x1]1+x ln(1+x)=x21+x x(2x+1)ln(1+x) g ( x ) = x − ( x 2 + 1 ) ln ⁡ ( 1 + x ) g(x)=x-\left(\frac{x}{2}+1\right)\ln(1+x) g(x)=x(2x+1)ln(1+x),则 g ( 0 ) = 0 g(0)=0 g(0)=0 g ′ ( x ) = 1 − ( x 2 + 1 ) 1 1 + x − 1 2 ln ⁡ ( 1 + x ) = 1 2 [ x x + 1 − ln ⁡ ( 1 + x ) ] g'(x)=1-\left(\frac{x}{2}+1\right)\frac{1}{1+x}-\frac{1}{2}\ln(1+x)=\frac{1}{2}\left[\frac{x}{x+1}-\ln(1+x)\right] g(x)=1(2x+1)1+x121ln(1+x)=21[x+1xln(1+x)]

h ( x ) = x x + 1 − ln ⁡ ( 1 + x ) = 1 − 1 1 + x − ln ⁡ ( 1 + x ) h(x)=\frac{x}{x+1}-\ln(1+x)=1-\frac{1}{1+x}-\ln(1+x) h(x)=x+1xln(1+x)=11+x1ln(1+x),则 h ( 0 ) = 0 h(0)=0 h(0)=0 h ′ ( x ) = 1 ( 1 + x ) 2 − 1 1 + x = − x ( 1 + x ) 2 < 0 h'(x)=\frac{1}{(1+x)^2}-\frac{1}{1+x}=-\frac{x}{(1+x)^2}<0 h(x)=(1+x)211+x1=(1+x)2x<0,故 h ( x ) h(x) h(x) ( 0 , + ∞ ) (0,+\infty) (0,+)上单调递减,即 h ( x ) < h ( 0 ) = 0 h(x)<h(0)=0 h(x)<h(0)=0

因此 g ′ ( x ) < 0 g'(x)<0 g(x)<0 g ( x ) g(x) g(x) ( 0 , + ∞ ) (0,+\infty) (0,+)上单调递减,故 g ( x ) < g ( 0 ) = 0 g(x)<g(0)=0 g(x)<g(0)=0
由此得出 f ′ ( x ) < 0 f'(x)<0 f(x)<0 f ( x ) f(x) f(x) ( 0 , + ∞ ) (0,+\infty) (0,+)上单调递减,由于 1 2 α + 1 < 1 2 α \frac{1}{2\alpha+1}<\frac{1}{2\alpha} 2α+11<2α1,所以有 f ( 1 2 α + 1 ) > f ( 1 2 α ) f\left(\frac{1}{2\alpha+1}\right)>f\left(\frac{1}{2\alpha}\right) f(2α+11)>f(2α1)到这里我们就证完了这个不等式。∎

总的来说,我感觉这次补赛比主赛要简单一些,可做性还是非常大的。希望参赛的同学们都能取得好成绩~


2022.12.13更新:成绩出来了,笔者考了93?!三、(2)没写扣了7分,理所应当,但是第四大题我的证明是错的,就是证明结构和标准答案差不多,所以居然给了满分,应该是老师没看出来吧。这里我想到了一个有趣的问题:形如 f ( x ) = ( 1 + 1 x ) g ( x ) f(x)=\left(1+\frac{1}{x}\right)^{g(x)} f(x)=(1+x1)g(x)的函数,它的增长性是怎样的呢?我之所以第四题会用错误的证法,是因为 g ( x ) = x g(x)=x g(x)=x的时候 lim ⁡ x → ∞ f ( x ) = e \lim\limits_{x\to\infty}f(x)=e xlimf(x)=e而且 f ( x ) f(x) f(x)单调递增嘛,所以我感觉 g ( x ) = x 2 g(x)=\sqrt{\frac{x}{2}} g(x)=2x 的时候 f ( x ) f(x) f(x)也应该是单调递增的吧……结果就完蛋了。所以,当 g ( x ) g(x) g(x)增长比 x x x慢的时候,应该格外注意,有可能 f ( x ) f(x) f(x)就会递减了。

2023.3.11更新:我们省的省一分数线60,这下应该是省一了……

2023.3.12更新:省一了!哦耶!

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值