计蒜客 挑战难题 跳跃游戏二

给定一个非负整数数组,假定你的初始位置为数组第一个下标。

数组中的每个元素代表你在那个位置能够跳跃的最大长度。

你的目标是到达最后一个下标,并且使用最少的跳跃次数。

例如:

A = [2,3,1,1,4], 到达最后一个下标的最少跳跃次数为2.(先跳跃1步,从下标0到1,然后跳跃3步,到达最后一个下标。一共两次)

格式:

第一行输入一个正整数n,接下来的一行,输入数组A[n]。

最后输出最少的跳跃次数。

样例输入
5
3 1 1 1 1
样例输出
2
题解:
利用动态规划,模拟背包问题;从最后出发dp[i]=main(dp[i],dp[j]+1);
依次向前查找,dp[i]表示第i个到最后一个的最短步数;
#include<stdio.h>
#include<algorithm>
#include<iostream>
using namespace std;
int main()
{
	int a[1000],dp[1000],n,i,j;
	scanf("%d",&n);
	for(i=0;i<n;i++)
	{
		scanf("%d",&a[i]);
	}
	dp[n-1]=0;
	for(i=n-2;i>=0;i--)
	{dp[i]=n;
		for(j=i;j<n&&j<=i+a[i];j++)
		{
			dp[i]=min(dp[i],dp[j]+1);
		}
	
	}	printf("%d\n",dp[0]);
}

另附其他理解:

先给出状态转移方程 d[i]=min(d[i],d[j]+1)(i<j<=n-1&&j<=I + a[i],d[n-1]=0),d[i]代表对于第 i 个数 其到达n – 1所需的最小步数, 对于 i 显然左边方程是正确的,因为一个数 a i

可以跳跃到的数中理应跳跃到 到达n – 1 所需步数最小的位置,跳到其他的位置不可能花更少的步数。

总结(吐槽?): 动态规划的题目就这样,基本给出方程来就没什么好说的了,这道题目被划分在动态规划的题目里,所以直接往这个方向想,答案一下子就出来了

题目的解与状态恰好一样。这是我靠自己做出来的第一道动态规划的题目,此前经典例题做过很多但都是看了题解的,所以,让我非常有成就感,在此简单归纳一下

Dp题目的特点。

  1. . 可以划分为若干的子问题
  2. .由局部解可求得全局解
  3. . 往往需要递推公式或递归解题
  4. .子问题的解往往拓扑有序,比如这道题 求d[i]必须先知道d[i+1]到d[n-1]的值,且不能通过d[i]求d[i+1]到d[n-1];

由以上特性我们可以明白那些题目适合用dp解决,其实特性3是由特性4所决定的,做dp题目关键就是状态转移方程的设计,首先要先想好状态

可以从问题解入手,因为出题者考查的是动规的话,往往有意无意让状态与解接近,为了设计合理的状态,对题目适当的数学抽象也是必要的,然后根据子问题

的划分着手设计方程,动规其实是一种思想,根据已有解进一步推出全局解,让答案"动态生成",其实关于dp很重要的一点是可能的重复计算,递推是一种消除的

方法,还有的方法是记忆化搜索。最后要说的就是dp一般都能给出有令人满意的时间复杂度的算法,但是他绝不是最优的,题目可能存在更优的贪心算法,这道题目

叫做跳跃游戏二,跳跃游戏的改进版(其实更简单。。),那道题就是利用贪心的策略,但那道也可以使用dp解决。dp的一些特性贪心也是满足的


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值