这些图表有没有把你欺骗了?

以前我们看到一个做得很烂的图表,或者穿帮的数据可视化作品时,往往是将它们嘲笑一番也就算了。但有些时候,尤其是刚过去的这一年,我们好像更难分辨一个可视化作品是单纯的糟糕产物,还是出于偏见而刻意制造的虚假信息。

当然,用数据来撒谎已经不是什么新鲜事儿了,但现在图表越来越容易被广泛传播,网上到处都是,而其中好多传递的是假象。你可能只是随便瞟了一眼,但一个简单的信息也可能在脑子里生根发芽。在你还不知道的时候,小李子已经在桌子上转起了陀螺,而没人关心它会停下来还是会一直转下去。

自然而然地,现在我们需要快速看穿一个图表是否在撒谎,而这篇图文就是你贴心的指导手册。

1)截断数轴

bb887237f51ab833a37c23775b38c4e0.png

左边的y轴数据从10开始,纯粹的瞎话。右边的数据从0开始,很好。

长度是柱状图视觉呈现的关键,所以当某些人通过截断数轴而故意把长度缩短时,整个图表的差别就变得更明显了。这些人想要展现出比实际情况更剧烈的变化。

2)双重数轴

1b22b6d7bdfb7f494668391638bc952e.png它用了两种差距极大的比例,可能是为了强行扯上因果关系。

通过使用双重数轴,数据的量级可以根据两种度量来缩小或扩张。人们通常用它来表达相关度和因果关系。“因为这个东东,另一个事儿发生了,看,很清楚吧。”

3)总和不对头

bbdd25a206f1b972bb17d89ecf3c73f3.png

饼图中所有部分的比例加起来超过了100%。

一些图表专门要展示总体中的某些部分,而当这些部分加起来超过了总和,问题就很大了。比如,饼图代表的是总共100%,而如果每个扇形的比例加起来超过了100%?怪怪的。

4)只看绝对值

8c1dacef2a26d1ae9b68a9557a2ac6c1.png这其实只是人口分布图。当你对比不同地方、种类或群体时,你必须考虑相对值,公平比较

任何事物都是相对的。你不能因为某个城镇发生了两起抢劫案,另一个只发生了一起,就说第一个镇更危险。万一第一个镇的人口是第二个的一千倍呢?更有效的方式往往是对比百分数和比例,而非绝对值和总值。

5)有限范围

78f7f9ad0357210060a2422f85cf6e80.png左图看上去增幅很大,但右图显示出这只是常态,且选定时间内的增幅实际并不明显。

人们倾向于精心挑选日期和时间段来配合特定的叙事,所以更应该考虑到历史背景、时常发生的事件,以及合理的用来比较的基准。

当你研究全局时,可能会发现有趣的事情。

6)奇怪的分级

52f92c7e0e6fe3f320205b1db84746db.png左图只有两个分级,大于1的究竟包括些什么?可能在打掩护。右图更好,展示了更多变量。

有些可视化作品会过分简化一个复杂的模型,而非展示出原数据中完整的变量范围。这样做很容易会把一个连续的变量转化为从属于某一类别的变量。

广泛的分级在某些情况下很有用,但复杂性往往才是事物的意义所在。要防止过分简化。

7)混乱的面积比

7e1d1720a41a86029ac02d79663febc7.png30是10的三倍,但或许是为了增加显著性,图上最大的矩形比最小的大得可不止三倍。

如果按照面积来进行视觉上的编码,图形的大小比例就该是面积的比例。有些人却在做面积编码的可视化时,改变边长的比例来突出大小对比,完全是为了抓马啊。

有时这种错误是无意间造成的,更需要警觉。

8)操控面积维度

132171c72b7bdec7fe4d20e576d7a53c.png上下两个图形的面积相等,但看上去很不一样。

或许有人懂得怎么用面积来做视觉编码,却还(gu)是(yi)做出了上图这样的东西。我还没见过如此夸张的例子,但以后说不定就会有。我打赌连象形图都能出现,等着瞧吧。

9)为了三维而三维

dcf4ffd828bb3bcccdd0cab47c13ae74.png千万别当你看到一个明明没必要还强行用三维的图表,请质疑它的数据、图表、作者及图表衍生出的任何事物。

划重点:

如果一个可视化作品出现了以上任何问题,并不代表它一定在撒谎。正如Darrell Huff在《如何用数据撒谎》里说的:

“本书的标题和里面一些内容可能像是在说,所有类似的作品都是为欺骗而生的产物。美国统计协会一个分会的主席曾经因为这个批评我,他觉得与其说出于欺骗,倒更像是能力不足。”

当然,这并不等于就可以原谅,毕竟也做错了嘛。但记住这点,你在骂某某某是骗子之前就可以再考虑考虑。

我的经验是,仔细检查那些令人震惊的、比想象中更具戏剧性的图表。

图表并不能让虚假的信息变成真的,数据也不能。它们会屈从于做图的人,也展示出信息本身之外更多的东西。那么,睁大你的眼睛咯。

End.  来源:Flowingdata;By:Nathan Yau;新浪新媒体实验室编译

24f0b1c1b2730d0a6c33a39613772753.png

往期精品(点击图片直达文字对应教程)

9ceb57b081feb3b290b73d768b16c7c2.png

ced6b76cdee21feb6962853427786f44.png

9dab5159028cf111ad6c27e558ead2b1.png

2fd79335318dd630760de145feaa632a.png

a40469938db225cf92ee7e0d117e1753.png

f308ae4a33cc07395438245b6fcd4f6f.png

5a2e52c939e5306544be4130cb9b7a4a.png

220c759ac360904c92a90eebf07399c4.png

cdf6813c16736dc5e34f1d03bad28fd2.png

eb5975540ca63f7f4cc1718fc7a66b4b.png

f7d8749c0be597b73557afc39e8c34bb.png

ca86965e1f6c5cef0ca22b4ae1fc8295.png

82759dad109a3147ac5be031636f802a.png

2c95de75e9b903caa99fb42d20d0d301.png

283bc40075ef940e91150c264c8b2a63.png

887b2aac36ac2a2ffa71105f800f6fff.png

0186f6a36abc303e8fb5ccafb9ec9ccd.png

50f46731f34a95cd55e3f5dd835694ff.png

7f6bfa4241c7b741be2705e599016177.png

e53789324d82f0477f72dedede87a073.png

041a093673df666c1898bb564886b04c.png

93ee2b26671768ed4f3a2bcedd5b1918.png

cfcb262455bb94d096127a45b7654d0a.png

0731989ff4dd52ec2916cf91e5defc05.png

da1307285d3b0842f85e936512e49bd4.png

f06c82f81b1db93552bc6b764435109d.png

f2cf9ada3a9237345714fba48c47e0cc.png

5422bcc9c88889df9e304cba7beed928.png

机器学习

后台回复“生信宝典福利第一波”或点击阅读原文获取教程合集

3d8fcb559c179912239be502759a68d0.png

8c22fe8eeb286a95809bd62175963f0c.png

af934a04d970185f5fb469677edfeab8.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值