NAR | 董波/王师/李语丽合作建立首个横跨动物界的进化发育组学数据库平台

中国海洋大学团队发布了EDomics,这是首个覆盖动物界主要进化节点的多组学数据库,旨在推动进化发育生物学研究。该数据库整合了大量基因组、转录组数据,并提供了强大的生物信息学工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

进化发育生物学(EvoDevo)是近年来国际上迅速崛起的新兴前沿交叉学科,旨在通过研究生物界高度多样化的发育过程,从而深刻归纳阐释发育过程背后隐藏的进化驱动机制和规律,以解答被Science杂志评为125个最具挑战性的科学难题之一的生物多样性决定机制问题。在过去的几十年里,利用经典模式生物(如黑腹果蝇、秀丽隐杆线虫、斑马鱼和小鼠)所开展的广泛研究给我们带来了生物学领域诸多重大发现和突破,奠定了目前遗传、发育和进化等领域的基本知识构架体系。然而,为数甚少的模式动物无法涵盖动物界高度多样化发育过程的全部信息,更无法提供对整个动物界发育进化过程的全景式解读和归纳。为填补这一极大的知识空白,利用具有关键系统发育位置和全谱系覆盖的新兴模式生物来描述整个生命树的发育进化,对驱动进化发育学领域的跨越式发展具有极为重要科学价值和意义。高通量测序技术的革命性突破及各类组学技术广泛应用,为生命科学领域带来前所未有的发展契机。基因组学、转录组学以及单细胞技术加速了许多传统的非模式生物转变成新兴的模式生物(如栉水母、丝盘虫、玻璃海鞘、侏儒蛤等)。尽管近些年非经典模式动物类群已积累了海量的多组学资源,并仍以史无前例的规模快速增长,但对这些储存分散的组学资源进行整合和综合分析仍是目前国际上动物进化和发育研究领域共同面临的重大挑战,迫切需要系统建立面向整个动物界的进化发育综合组学数据库和相应的分析工具和平台。

2022年11月1日,中国海洋大学海洋生物遗传学与育种教育部重点实验室方宗熙萨斯海洋分子生物学研究中心的董波教授团队和王师教授团队联合在Nucleic Acids Research在线发表 EDomics: a comprehensive and comparative multi-omics database for animal evo-devo (http://edomics.qnlm.ac),标志着国际上首个横跨整个动物界主要进化节点类群的发育进化相关多组学数据库和综合分析平台的成功建立和正式启用。

5e76e8f479b37b260a85944875c7b6c1.png

研究团队收集整合了横跨整个动物界的传统模式生物和新兴模式生物大量的基因组、转录组、单细胞和空间转录组数据资源,建立了统一分析标准,对多物种海量数据进行了归类处理,打通了跨物种多组学数据比较分析瓶颈技术难题,构建了国际首个动物进化发育多组学综合数据库平台(EDomics, http://edomics.qnlm.ac)。EDomics 数据库代表了迄今最全面和综合的发育进化多组学资源,囊括整个动物界主要类群的代表性物种,包括来自21个主要动物门类的40个高质量基因组和 1010 个bulk转录组,以及68个单细胞转录组(涵盖来自12个广泛研究物种的429种细胞类型)。所包含的物种涵盖了主要的发育特性和进化节点,包括胚层的出现和分化、辐射对称和两侧对称的形成、原口动物到后口动物的过渡、水生到陆生以及无脊椎动物到脊椎动物的转变等(图1)

a4bbab8a4e13bf53fbbd04acb66921e3.jpeg

图1 EDomics囊括动物界主要进化节点类群及其多组学数据概览

EDomics 数据库不仅提供了高质量的多组学信息(包括基因组组装、基因组注释、基因家族聚类、线粒体基因组、各个发育阶段与成体组织/器官的基因表达谱和基因共表达网络),以及多维度的单细胞组学信息(如细胞聚类、标记基因、基因表达和空间信息等),同时也提供了强大的生物信息学工具。通过这些工具可以探究和比较分析不同动物类群之间的进化信息(如基因家族扩张/收缩、核心和可变基因组、基因组宏观共线性和发育转录组相似性分析等)。此外,利用数据库提供的定制化工具可高效开展跨物种组学数据分析和细胞谱系追踪(图2)

6b2c61a84e7b0e55a10851691f178d8c.jpeg

图2 EDomics数据库的六大功能模块实现了多组学数据和跨物种整合分析

EDomics数据库能够对整个动物界的基因组学和转录组学信息进行系统的进化发育维度展示,并提供极具价值、独特的平台来描述发育过程的主要转变和生物进化中的创新性变化。EDomics的建立将为国际动物进化和发育学界提供一个物种覆盖度最广、组学资源最丰富、分析功能最全面的开放获取数据库平台,实现对迅猛增长的evo-devo海量组学资源的系统整合和深度分析,以助推生命科学领域的创新发现和重大突破,最终描绘出整个生命之树的发展演变的全貌。

以上研究成果的发表为国际动物进化发育领域提供了重要资源平台。文章评审期间,国际同行给予了很高的评价:“作者展示了一个动物进化发育领域综合的多组学数据库,令人印象非常深刻”(“The authors presented an integrative multi-omics database EDomics for animal evo-devo, which is very impressive.”);“这为整个进化发育生物学领域提供了非常有用的工具,特别是对单细胞和空间转录组数据的整合”(“These might be very useful tool for future studies in EvoDevo field especially recently published data of scRNA-seq and also spatial expression map.”)。这一成果是方宗熙萨斯中心团队在发布国际首个软体动物综合基因组数据库(MolluscDB: an integrated functional and evolutionary genomics database for the hyper-diverse animal phylum Mollusca【http://mgbase.qnlm.ac, Nucleic Acids Research 2021】)之后的又一重要突破,进一步彰显了中国海洋大学方宗熙萨斯中心在进化发育生物学领域的国际学术影响力。

方宗熙萨斯中心董波教授、王师教授、李语丽副教授为论文的共同通讯作者,隗健凯博士、硕士生刘鹏辉、博士生刘福云为论文共同第一作者,中心其它成员参与了本项目研究开发工作。

方宗熙-萨斯海洋分子生物学研究中心:

http://mgbkl.ouc.edu.cn/sfc/main.htm

原文链接:

https://doi.org/10.1093/nar/gkac944

4 篇 NAR | 生物大数据时代,如何做好数据管理和再利用,发IF10+的数据库文章?

往期精品(点击图片直达文字对应教程)

bc766cbafd900cac974715cceef9cff0.jpeg

8666ac78fef7fff6aeaaeb1043672626.jpeg

68f93db7d5acd27b3ba93f9af960f127.jpeg

7dff042755e4014dcc7e0f4436ded48a.jpeg

1a8b5401da785f13d57c260faad165d4.jpeg

9796d4a8539df144f3bb13234cf88ebf.jpeg

8d6e978dbb2499ec97a960fa28fc27be.jpeg

a405299eab4a1357092a37704ee1789e.jpeg

79702b474b79f9ae2c5d25f18882049a.jpeg

137ea9e1c3e8816c5e20a856b0920e6e.jpeg

b8091d5ce10b94560414a7e09be5a2a8.jpeg

7c370a44f8ff7f87da08dd54c5e28d24.jpeg

aa09d7646733bcc5faf05a13d7b8efc5.png

f0526047c19b71721d03102ec345c8fa.png

b7616a16a5cefd5cd362761f5801ec17.png

3bd24691192d56a0bb2308f59a728c11.png

4d5bc22bdfe0939c5b2b93f8f82be255.jpeg

585b0cbae062bc40f98a9d499c9a4a3d.jpeg

538d8c27abd6f3727c81ca07f88a3224.jpeg

519ad7b9bd7ebef18f305596a62015ea.jpeg

b38a6146b0384cecd9e30013393b0e54.png

643a2964ba00bfff28df53560e885a07.png

d88da80e65540ef92f5a029e64f82219.jpeg

a31e0b9a3025e244a705d8eddb2489d1.png

08c7886ab763d3c618e342e728106d21.png

e5462bbb4ccd10ea60bdd916c8644373.jpeg

6e0477fc51fb46ef213119b29620ac5a.png

9dfcc329da14fc54592caf8613ed6908.png

机器学习

后台回复“生信宝典福利第一波”或点击阅读原文获取教程合集

16c3fb0f999d13dfd49a21e55dc86a68.jpeg

91fea0b948c2cfce3f128ccca5868505.jpeg

266d9a353af8289b0d64ce1d70ac850a.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值