基因决定长相?Nat Commun︱刘凡/Manfred Kayser团队合作发表影响面部形态建成的遗传变异和功能基因...

全基因组关联研究(Genome-wide association study, GWAS)是研究人类复杂表型遗传因素的有效方法。科学家们已应用GWAS发现了大量的遗传易感位点,阐明了人类复杂表型的多基因性本征,完善了精准医学的核心理论,构建了数千种疾病的遗传风险评估模型,并为多项临床转化类研究提供了明确的分子靶标。然而,由于无法同时分析多个表型,标准的GWAS流程不能高效检出具有多效性的遗传变异。随着人类复杂表型研究体量的与日俱增,如何高效集成分析大量表型亟待解决。    

相较于使用个体数据的多表型集成分析方法,基于GWAS汇总数据的方法在多队列合作研究中不受个体数据分享限制,同时受队列特异性影响也更小,因此应用范围更广,但也面临统计学和计算机科学领域的多项挑战。例如需要推导对多表型效应高度敏感的统计量,考虑由遗传和非遗传因素导致的表型间复杂关联关系,校正由多重迭代和样本重叠等因素导致的统计量膨胀,同时在分析大量GWAS的情况下,还要对算法的复杂度、并行化方案和内存占用进行优化。

2022年12月20日,北京基因组所(国家生物信息中心)原刘凡研究组与荷兰伊拉斯谟大学Manfred Kayser团队合作在Nature Communications上发表了题为“Combining Genome-wide Association Studies Highlights Novel Loci Involved in Human Facial Variation”的文章,该研究研发了用于集成分析多GWAS的高效算法C-GWAS(Combine GWAS),提供了高度并行优化的开源R软件包,同时通过大规模计算机模拟,展示了C-GWAS对遗传多效性的高检出率和在不同遗传结构下的高稳定性,进而应用C-GWAS分析了78个人类面部形态表型,新发现并验证了一批影响面部形态的遗传变异和功能性基因,加深了对人类多维复杂表型遗传结构的理解。

在方法设计层面,作者对多维GWAS统计量构成的相关性矩阵进行了分解,来区分由可解释遗传因素导致的 “效应相关性” 和由不可解释与非遗传因素导致的 “背景相关性”,进而依据效应和背景相关性相对强度优选合适的统计量进行集成分析,同时引入自适应迭代算法以甄别部分遗传变异仅对特定表型子集有效应的情况,从而实现对遗传多效性检出率的最大化。为了克服由于多重迭代优选引起的统计量膨胀,作者通过计算机模拟获得统计量在零假设下的真实分布,并利用其与均一分布的对应关系,对最终观测到的统计量进行校正,确保了C-GWAS结果和标准GWAS结果可直接在相同显著阈值下进行比较。通过大规模数据模拟发现,与多种其它方法相比,C-GWAS在不同复杂场景下的统计功效和稳定性均展示出明显提升。    

人类面部形态代表了一组多维、可遗传且相互关联的复杂表型。作者应用C-GWAS集成分析了78个面部形态的GWAS,结果显示C-GWAS的检出率是传统方法的3倍,并发现了17个影响脸型的新遗传位点。通过进一步的验证分析和功能基因组学分析,作者展示了C-GWAS的结果比传统方法的结果具有更高的遗传多效性,显著提升了脸型可被遗传因素解释的比例,且所指向的靶基因具有更明确的生物发育学功能,表明了C-GWAS在解析多维复杂表型遗传结构中的优势。    

在新发现的17个影响面部形态的遗传位点中,有13个位点位于颅神经嵴细胞(Cranial neural crest cells, CNCC)中活性调控元件附近,或在垂体等多个组织中表现出与基因表达eQTL信号的高度共定位。其中,与面部宽度和长度相关的CDK2AP1内含子中的多态性rs10773002,其附近的调控元件在CNCC中调控CDK2AP1的表达,且该位点在多组织中与CDK2AP1的eQTL高度共定位,CDK2AP1编码的蛋白在细胞周期、胚胎干细胞分化和表观遗传调控中发挥作用。这些证据提示该位点通过调控CDK2AP1的表达参与到面部形态形成的过程中。    

综上,C-GWAS是一种不依赖个体数据对多表型GWAS汇总数据集成分析的高效算法,对遗传多效性有较高的检出率并在复杂场景下有很强的稳定性。作者提供了高度并行优化的开源R包,可在数小时内集成分析数百个GWAS汇总数据。C-GWAS在人类面部形态数据上的应用成功发现了一批新位点和功能基因,加深了对人类面部形态的遗传结构的理解。未来C-GWAS将被用于解析更高维复杂表型的遗传结构,为多表型间共享遗传因素网络的描绘提供技术支持。

280ee649dfe801c2c1ef63af43dbd18e.png

往期精品(点击图片直达文字对应教程)

c0e5803f242b1252c9b177636cb13775.jpeg

f4d4a88644c712ef4cce7ed23d8f7760.jpeg

9e538e9d70793edb29ef404317cee330.jpeg

39b274c8ce2f1a2124fd18afa58fead3.jpeg

368ed41ba6042ae30cded05972810cf9.jpeg

d4ee9ff3ac2ae5e4d0e3ea7db4eb27a7.jpeg

71b22902413d2af2613f06ca160b529e.jpeg

3018b2fb5d2b8c14a96064d601205cea.jpeg

c278e76ba44dca0b521ab0bb7fa9b3bf.jpeg

4b2b68429e667238c41f50889cd1e5a4.jpeg

7fe77b97e6fa7b184a9b262723207c93.jpeg

1e023f130d0c2317f8b5594ad621d231.jpeg

f230d7498fd72c6a83d7d4140cf8a1d4.png

92fbdf76ebf9c3b8e847179ef99281d9.png

147ac44f92389b68fb5f6514a9a96bad.png

5ebdea0baf80671f358d7092314a7a77.png

6fd2eb33a89722ca732d05dedc1c1149.jpeg

185aa15e7b5b25febc6cb87d7073372a.jpeg

3ba886f6cd6b8fadac0ab4aa4b290477.jpeg

913fb72e89da89c8d4fe861bff84344f.jpeg

8a3e7bee99d4c217001a6d55687e611c.png

7a7daa59e6d266a1138dce9c13eacbfe.png

cdacf4b4f1e9d9479454dda32fe0a901.jpeg

72c3c001865a48957b62e3957f2d1673.png

ff2d32ae398f4664d8be9d2117d70e16.png

73d780edf01a0cc876e23524e165eeb8.jpeg

39b780569e9deb66cea255fbaabee103.png

091c8ef9cacda0d6c54c47eb44c7c949.png

机器学习

后台回复“生信宝典福利第一波”或点击阅读原文获取教程合集

eaba1fa581a1bd46461fab4a76d7c1dc.jpeg

6f0442198e131e53d1c27c361d670328.jpeg

246c13d7f397ad53b9ca762bb97ddab5.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值