送书5本 - 7年!冠绝Python圈的经典大部头升级版来了,豆瓣评分9.6

没有了这部作品,Python 程序员将会失去很多“获取知识的乐趣”。

无数大佬将这本书作为自己反复查看的手册,认为是这部作品带自己真正见识了 Python 之美。

6ee729118b1e4ef8ed18f7193c16249b.png

这位读者朋友,不好意思昂,因为尚未获得你的授权,将你的 ID 和头像打了个码,如果你读到了这篇文章,需要实名,请留个言,我们评论区请您出镜。

某一天刷豆瓣书评,刷到这一条,欣喜,也许「X之美」已经在书名中被用到大家审美疲劳了,但作为这本书的代表评论竟然如此贴切。我久久不能忘怀,这次非得把它写到文章中不可。

我想,大部分朋友已经猜到了这本书是——《流畅的Python》,毕竟它是这样为大家所熟知。

这里,需要简单说明两个问题:一个是标题中的“豆瓣评分9.6”,是英文版的豆瓣评分(第1版和第2版都是)。中文版的豆瓣评分第1版是 9.4 分(距离原版有差距,还需继续努力)。

4487270275ae1fcf38595081d2bbd2b3.png

另一个是,标题中的「冠绝Python圈」——作为一个编辑,我非常清楚很多人用最高级词汇来吸引眼球,严谨的读者对这样的词也已经免疫,甚至会本能地抵抗。我自认是一位比较务实的编辑,极少使用这样的词,但是,对于这本内心极度偏爱的作品——真的太难了,太难拒绝为一本如此经典、如此纯粹、带领众多 Python 开发者精进的图书使用「最高级、绝对级」词汇了。因此,冒着一些被讨厌的勇气,我在标题中使用了这样的词,还请各位体谅。不过,我想,在读文章的各位应该也不会反对:如果 Python 圈有一本书值得给出这样的赞誉,那么非《流畅的Python》莫属(其实,微信读书的读者也给出了「神作」的推荐)。

d8d5e433c794438ace54f918af1faf80.png

让我们非常欣喜的是,在首版出版 7 年之后,我们迎来了第2版(英文版的间隔时间,中文版为 6 年)。

图灵深知大家对这本图书的喜爱,所以不论是译者安道,还是图灵编辑部的老师都快马加鞭,终于赶到了在英文出版不到一周年之际,可以盛情邀请读者阅读中文版了!

e5ab9e72fbb17f5e5922358ad5a7154b.png

作者: [巴西]卢西亚诺·拉马略(Luciano Ramalho)
译者: 安道

(新版分上下册哦,阅读更方便)

那么,第 2 版都更新了哪些内容?我们一起来看看,以下 3 章为完全新增

  • 第5章 数据类构建器

  • 第8章 函数中的类型提示

  • 第15章 类型提示进阶

以下 3 章内容经过了大调:

  • 第13章 接口、协议和抽象基类

  • 第14章 继承 瑕瑜互见

  • 第16章 运算符重载

其余所有章节的文字内容和代码都基于 Python 3.10 进行了修订。综合评估,内容修订率超过了 35%。如果还没有这本书的朋友,放心购入,目前,5 折是抄底价

下面是全书的图书目录(分上下册,上册 1~3 部分,下册 4~5 部分,共计 772 页):

98e9ac7b7d04aa45983da820ab07c635.png

cae1ccb20ac15577d94d301150d3eeb4.png

看见图什么感受?16 章啊,每一章还有好多节,内容还写得巨好 ,这就是 Ramalho 大佬厉害的地方。

40f16797fda2d5c46d8c13a20b47af8b.png

上面那个图很大,如果不方便,
可以用这个图速览内容

Ramalho 大佬不仅技术高,而且心细,每一章更新了什么内容,都在具体章的第一节做了详细说明,比如:

906eca2321ec31f3820fc1715cfc749c.png

当然,Ramalho 的厉害不仅体现在超级细心、超高的写作水准上,还体现在强大的总结分析能力上。你可能不知道——这本书光精心设计的代码示例就有近 500 段!还有大量的图和表,简直对学习真的太友好了!

话说,这本书这么棒,就连 ChatGPT 都知道呢!不光知道好,还知道好在哪里。

f82ce072013b602e59ea32a312bf1856.png

94828ee951b0b8462ca2c4bf6bd01bcb.png

这本书的经典性想必大家也都了解了, 我们再用一张简单的图来概括一下吧:

c1fd9944a227e286e60252dfa4d5c6e5.png

作者与译者

能有这么优秀的作品,必须要感谢作者卢西亚诺·拉马略(Luciano Ramalho)和译者安道的出色工作。让我们来 了解一下两位。

卢西亚诺·拉马略(Luciano Ramalho)
Thoughtworks 首席咨询师、Python 软件基金会成员、巴西知名 Python 语言学习社区 Python Brasil 联合创始人。拥有 25 年 Python 编程经验,他的《流畅的Python》是编程领域经典作品,影响近 8 万读者。

安道
活跃的技术图书译者,译有《流畅的Python》《Flask Web开发:基于Python的Web应用开发实战》《Python网络编程攻略》等经典图书。

最后

技术一日千里,而深入理解编程语言的本质永不过时。想要深刻理解Python,或早或晚,你需要这本书:

b3286bc5325f640f8ecb0d5edfc0700e.png

数据集介绍:航拍野生动物多物种实例分割数据集 一、基础信息 数据集名称:航拍野生动物多物种实例分割数据集 图片规模: - 训练集:5,895张监测图像 - 验证集:590张监测图像 - 测试集:251张监测图像 覆盖物种: 獾类(Badger)、鸟类(Bird)、野猪(Boar)、猫科动物(Cat)、鸡(Chicken)、牛(Cow)、鹿(Deer)、犬科(Dog)、鸭(Duck)、狐狸(Fox)、鹅(Geese)、鼠类(Mouse)、兔(Rabbit)、羊(Sheep) 标注特性: - YOLO格式实例分割标注,支持复杂生物形态的轮廓识别 - 包含动物行为特征与自然环境交互的多样化场景 - 标注点密度高,平均单目标包含30+坐标点 二、适用场景 生态保护监测系统: 支持开发基于航拍影像的野生动物种群动态监测系统,适用于自然保护区、国家公园等场景的生物多样性保护。 智能农业管理: 适用于畜牧养殖场智能监控系统开发,实现畜禽行为分析、异常状态预警等功能。 生物学研究支持: 为动物行为学、种群生态学研究提供标准化视觉数据,支持跨物种交互研究。 灾害预警系统: 适用于开发入侵物种预警系统,防范野猪等动物对农田、居民区的破坏。 三、核心优势 多维度物种覆盖: 涵盖14类常见陆空野生动物,包含家畜与野生动物交互场景,支持跨物种关系研究。 高精度实例标注: - 精确到毛发级的多边形标注,完整保留动物形态特征 - 包含动态行为标注(觅食、迁徙、群聚等) - 标注经过动物学家校验,符合生物学特征识别要求 场景多样性: - 覆盖昼夜不同时段、多种气候条件下的监测数据 - 包含平原、林地、水域等多类型生态环境 - 具备复杂背景下的目标检测挑战性样本 任务适配性: - 原生支持YOLO系列模型训练 - 兼容目标检测、实例分割、生物量估算等多任务需求 - 提供跨场景模型验证的标准化测试集
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值