Science | 人类和灵长类动物中可耐受的遗传变异图谱

研究通过对233种灵长类动物的全基因组测序,记录并分析了430万个错义突变,发现这些在非人类灵长类中自然选择容忍的变异在ClinVar中多数被标记为良性。开发的PrimateAI-3D模型通过三维卷积神经网络在蛋白质结构上进行半监督学习,提高了区分良性和致病变异的能力,为解决变异解读的标记数据不足问题提供解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

bce86f5095464782059d3939f14c002b.png

介绍

到目前为止,数百万人已经接受了全基因组和全外显子组测序,这是一个巨大的投入,首次揭示了在我们物种内作为个体区分我们的巨大小遗传差异的广泛目录。然而,大多数这些基因变异的影响仍然未知,限制了它们的临床实用性和可操作性。能够准确区分致病突变和良性突变,并在全基因组范围内解释基因变异的新方法,将构成实现个性化基因组医学潜力的有意义的初始步骤。

方法

由于人类和非人类灵长类动物之间的进化距离很短,我们的蛋白质共享几乎完美的氨基酸序列相似性。因此,在一种物种中发现的蛋白质突变的影响很可能在另一种物种中是一致的。通过系统地对非人类灵长类动物的常见变异进行目录化,我们旨在将这些变异注释为不太可能引起人类疾病,因为它们在一个密切相关的物种中被自然选择所容忍。一旦收集到这些数据,结果资源可以应用于使用机器学习推断全基因组中未观察到的变异的影响。

eb999051de9b706f12e0c83035ff08bc.png

结果

遵循上述策略,我们为233个灵长类动物物种中的809个个体进行全基因组测序,并记录了430万个常见的错义突变。我们确认,在至少一个非人类灵长类动物物种中出现的人类错义突变在ClinVar临床变异数据库中99%的情况下被注释为良性。相比之下,灵长类动物以外的哺乳动物和脊椎动物的常见变异在ClinVar数据库中的良性比例显著较低(71%至87%的良性),从而限制了这种策略的应用范围为非人类灵长类动物。总体而言,我们重新对超过400万个先前未知危害后果的人类错义突变进行了分类,认为它们很可能是良性的,使得注释错义突变的数量比现有临床数据库增加了50倍以上。

为了推断人类基因组中剩余错义突变的致病性,我们构建了PrimateAI-3D,一个半监督的三维卷积神经网络,可以在体素化的蛋白质结构上运作。我们将PrimateAI-3D训练为在三维空间中分离常见的灵长类动物变异和匹配的对照变异,以进行半监督学习。我们将经过训练的PrimateAI-3D模型与15个其他已发表的机器学习方法一起评估,以评估它们在六个不同的临床基准测试中区分良性和致病变异的能力,并证明PrimateAI-3D在每个任务中均优于所有其他算法。

5d865cc753e94f27d3bae363ff03bffe.png

e914393a1ec127831f9fbe8cb915ab48.png

3b1aee18f1d061bd53cae49691605505.png

结论

我们的研究解决了变异解读领域的一个关键挑战,即缺乏足够标记数据以有效地训练大型机器学习模型。通过生成迄今为止最全面的灵长类动物测序数据集,并将此资源与利用三维蛋白质结构的深度学习架构配对,我们能够在多个临床基准测试中实现变异效应预测的有意义改进。

该算法见github,https://github.com/Illumina/PrimateAI-3D

单个位点查询可以登陆https://primad.basespace.illumina.com/

4661c857a69f135b353f239acfa67c24.png

大于0.8分认为有害。

往期精品(点击图片直达文字对应教程)

c947f866bb475bc61b7ed84ee9d84496.jpeg

d029667634125aecda51682f2d2714a1.jpeg

8d13b50ab1af0c8997117e11917fa116.jpeg

a402a9f1d53aec10ccfce8ebc34e3cf9.jpeg

4199d9ff475c5a6b55811e73b1d0d8ef.jpeg

ce6c31de2cf835d8420abfbe210ff2a0.jpeg

e42b898d84c46f506651dced7c5b395b.jpeg

ebc246092bdd8093bfe224f86566b8ea.jpeg

c6a9a76653ccf81549a26d0eb1141e28.jpeg

f47d7afa9015def46d1c5257b80ea41e.jpeg

7e4ebc4488646a1a36bb73ae588b53fd.jpeg

6149f072674458d02901281e60d1ca47.jpeg

235676bf3749f9e0514b8ad6015ebca6.png

4839a394f5d3d4b12d85768e084390c0.png

5f330c5b112581c14208426b0b9b74cc.png

6edbc23d13866e37dbf9216c079189c7.png

ef025b948c61cf7c7702fde938b8c836.jpeg

2c1b342ac62eb4f7a3fad82e599c99d2.jpeg

fc5239c780515021f53a037aa33d37e2.jpeg

ca7188d4be4baac4fdbdfe8fd7b78b77.jpeg

6b1951d5b5e72e79a1c6e6c3dd4bf560.png

0a9f1012ccad16044bd909e9da2607d0.png

3a53c35fc57df1fef4cba529cb0d77b1.jpeg

1af3671fe1fd0115712343575897e959.png

8605947735924778569cac84e7eae286.png

aab6094cb1b69e15a4d357f963f05cc8.jpeg

005d49607cb39f609cc84107a5898546.png

4f2afe7ada52bafc334ca80c462dc079.png

机器学习

99037d406b1a4bbf6af436bd7d4f36ab.png

e91bcd33b873b2129a30995cc3a05073.jpeg

3c2fad248fbee7ee41eb1a8cb5b37ebe.jpeg

d21446bece7eb0906475fa2e59e5c424.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值