Nat Comput Sci|张世华课题组开发生物组织多切片空间转录组数据整合新工具-STAligner...

张世华课题组开发出STAligner,一种整合不同条件、技术及发育阶段空间转录组数据的新工具,能清晰识别组织结构并减少批次效应。研究展示了STAligner在人脑皮层和小鼠组织分析中的优势,对未来大规模空间转录组数据分析具有重要意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

细胞在组织和器官内的空间位置对其发挥特定功能极为重要。近年来快速发展的空间转录组(Spatial Transcriptomics)技术能够同时测量生物组织切片空间位点的基因表达和空间位置信息,为研究人员破译组织的空间结构,理解周围环境对细胞基因表达的影响提供了条件。张世华课题组于近期分别发布了适应于不同空间转录组技术、不同生物组织的生物组织空间亚结构识别工具-STAGATE(详见BioArt报道:Nat Commun|张世华课题组开发空间转录组生物组织亚结构解析新工具-STAGATE)和基于深度学习显著图的空间域特异可变基因识别方法-STAMarker(https://doi.org/10.1093/nar/gkad801);并与合作者绘制了地中海涡虫再生过程中的三维空间转录组图谱-STAPR,系统鉴定了多个再生关键调控因子(https://www.nature.com/articles/s41467-023-39016-0)。

随着空间转录组测序数据的持续积累,整合分析不同条件下产生的数据可以提供单个数据无法获取的生物学见解。然而,这些不同来源的数据之间会存在不可避免的批次效应。消除批次效应且保留不同批次之间真实存在的生物学差异,是实现数据整合的主要挑战。尽管目前的单细胞转录组数据整合方法也可以用于多切片整合,但由于没有考虑空间信息,聚类结果容易受技术噪声影响,缺乏清晰的空间边界,且容易过度离散。

2023年10月12日,中国科学院数学与系统科学研究院张世华课题组(博士后周翔、董康宁为共同第一作者)在Nature Computational Science发表了题为Integrating spatial transcriptomics data across different conditions, technologies, and developmental stages的研究论文,针对来自不同技术、不同发育时间点、不同疾病条件的生物组织多切片空间转录组数据建立了整合分析新工具-STAligner。

a1359f1ea475b1800e99bea5418513f6.png

STAligner首先基于图注意力自编码器得到融合空间信息与表达信息的位点低维表示(图1)。然后基于该低维表示,STAligner引入三元组来引导模型去除批次效应。在三元组中,锚点和正样本点对(pair)定义为具有相似基因表达但属于不同切片的互近邻(mutual nearest neighbor, MNN),而锚点和负样本点对属于同一切片,但具有不同的空间位置和基因表达。模型训练过程中通过最小化三元组损失和自编码器重构损失,实现批次差异减小,同时保留批次内的异质性。最终得到的低维表示用于后续聚类以识别具有相似空间表达模式的组织结构。值得一提的是,模型鉴定到的互近邻点还可以进一步用于引导堆叠连续切片的坐标配准,实现组织的三维重构。

4e3877f60e70b9bbdf604fff6f8eb108.png

图1. STAligner算法工作流程图。

研究人员首先基于人类背外侧前额叶皮质空间数据集,与传统单细胞算法Harmony和新近开发的切片整合算法如PASTE进行了比较。结果表明STAligner的整合聚类效果能展示更为清晰的人脑皮层分割边界,在组织结构识别方面取得了最优的性能。针对来自不同测序平台产生的小鼠嗅球切片(图2)、多时间点小鼠胚胎发育切片(图3)、正常和阿尔茨海默症小鼠海马组织切片的分析表明,STAligner有效地鉴定了切片间的共同与特异组织结构、小鼠胚胎发育过程中的结构动态变化以及与疾病相关的亚结构。

526a6d9adffd94e83dd8f7864016fd70.png

ad61901e66f2a3bbf4ef3eaafa476629.png

图2. 对于不同测序平台产生的小鼠嗅球切片,STAligner可以有效鉴定其中共有和特异的组织结构。

64daa6afea0ed1f258cdfafa2959678f.png

b5c4d83724018e84689d6789b5ea3bdf.png

图3. STAligner可揭示早期小鼠胚胎数据中解剖组织亚结构的发育动态。

综上所述,该工作开发了结合空间与表达信息的生物组学多切片空间转录组数据整合新工具STAligner。随着空间转录组技术的快速发展和数据的不断积累,STAligner将对大规模空间转录组数据的整合分析提供基础强有力的支持。

张世华研究员课题组常年招收人工智能、生物信息学与计算生物学方向的博士后、科研助理和(客座)博士研究生,有意向的同学可投递简历。

简历投递(有意者请将个人简历等材料发至):

https://jinshuju.net/f/ZqXwZt扫描二维码投递简历

26e4ed294796eb6ed460026314e99d10.png

原文链接:

https://www.nature.com/articles/s43588-023-00528-w

制版人:十一

往期精品(点击图片直达文字对应教程)

5374d77f28c4f4308f322248e58d7307.jpeg

25df76354d1177334dee5b3c9c45160d.jpeg

b5f6ba4e55c6d22354fcdd39b5fa4c5b.jpeg

fc24a45fb271d866d6c2c6b7004c1a4e.jpeg

67f2f78f70524ff2be4d5f62ba327b6f.jpeg

5f22de46a86dbb72a4f120a3c55a11ef.jpeg

49462a019acc7e61c1ee97dce4606794.jpeg

cd374a35b68066f7b3062574b1a4f2c5.jpeg

5a43c8ff38f5d9076ce88fbe92e4197b.jpeg

d7d1e6698a5c27a5ca9b00b82d525f53.jpeg

b4ac7785359eeb9e8e8e8ba8ef90e15b.jpeg

2b1b67f90ef833e0474db6f7712c2e86.jpeg

f4a2c9fc93313f38fb9d0fb408b4d748.png

ae9eb9ba6ce69939efa8ec26fe8aeb40.png

37e378f5a2faeff8123088ee8b086692.png

e7a22a9ea5159bc2fafff6ef1b739704.png

c4330318223570dced1cd789c572bd45.jpeg

b1f491194db42034042def0d67aadd2c.jpeg

54452403ef4fb40a7040c7c6e7de8986.jpeg

454dd9a453d36e18d1634c32ec2fcceb.jpeg

30ea93b4eaac3986147928c9aadb3f75.png

c5730c24bf7ae5137c4fde2130951f32.png

583f674b8e1f6d5ffa589eda0ef60509.jpeg

99bc23acb5a161c24d97b2bb80db5e4e.png

8338158a29d1b9b8bbe8f036e1f57d3a.png

1626a5eb5fab240a179975a4fe66b5e7.jpeg

3ef143c430f082a15796b8f2d03c7a73.png

2cdf3b99a1736eefec08a4daf42b053d.png

机器学习

5ce34961197f29ae7c1d080596a452d0.png

1d80e2aa09007014f0869fbddea98e13.jpeg

be39a8efcc887c28368a8790d01fe628.jpeg

eda7ccd1a6cff4bcdc2ed96940ccb082.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值