浙江大学良渚实验室沈宁团队Genome Medicine发布实现单细胞水平肿瘤细胞群突变与表达异质性的同步研究计算方法...

癌症是由于细胞的基因组突变引起的一系列改变,作用于细胞的基因组、表观组、转录组等多个层面。癌细胞的组织异质性与快速进化是肿瘤发展与治疗耐受的关键点与研究难点。近年来,单细胞转录组(scRNA-seq)技术得到了飞速发展与广泛应用,在肿瘤组织转录表达谱的异质性与耐药进化方面取得了一系列进展。然而,单细胞基因组水平体细胞突变(somatic mutation)等基因组突变方面的检测分析,受单细胞基因组测序技术的发展限制依然存在重重困难。由于scRNA-seq实验本身在单细胞水平所覆盖的基因组区域较少,造成了可检测突变的稀疏性。而实验过程中又会引入大量伪信号与噪音信号,进一步增加了在这一数据类型中高精准度检测体细胞突变的难度。

c752cc055d9a891a29602b8276c5fc94.png

20231218日,浙江大学良渚实验室研究员沈宁、博士生张天韵在Genome Medicine上发表了题为De novo identification of expressed cancer somatic mutations from single-cell RNA sequencing data的研究论文,报道了一种高精确度(precision)直接从scRNA-seq数据中提取体细胞突变的算法框架RESARecurrentlyExpressed SNV Analysis),该算法在多种类型的不同来源的癌症单细胞数据集上进行测试,均取得了较高的精确度。该算法可以应用于癌症的肿瘤异质性与耐药机制研究,实现单细胞水平表达量变化与体细胞突变的双重检测,推进肿瘤单细胞水平基因型到表型变化的理解与认知,对肿瘤分子机制研究、临床诊断、以及个性化治疗方案的制定都有重要意义。

64a5f6d03711f40e64c46e4f01a4cfa1.png

由于癌细胞以克隆方式实现快速复制,因此表达的体细胞突变具有cross-cell recurrence,而伪信号则更偏向随机分布且同时在多个细胞中出现的概率较低。基于该假定,研究人员开发了RESARecurrently Expressed SNV Analysis)算法。RESA算法主要分为三个阶段:初步变异检测,过滤和识别突变,以及建模再过滤。第一步将测序原始数据与基因组进行比对,并调用突变识别算法。在这一阶段,为了最小化比对和突变鉴定算法的bias,研究人员应用了两组独立read mappingvariant calling组合,确保初步鉴定的候选突变并非由数据处理算法偏差导致。第二步,研究人员通过对一系列条件进行过滤筛选,包括cross-cell recurrence数量,将候选突变分为三组,高度可信的体细胞突变或噪音信号,等待后续建模预测的候选突变以及被过滤突变。最后,研究人员将高可信度的体细胞突变定义为positive,可信的噪音定义为artefacts,建立分别包含质量相关特征和序列相关特征的联合逻辑回归模型,并将该逻辑回归分类器应用于候选突变,进一步精准识别体细胞突变从而提高整个生信模型框架的灵敏度。

研究人员分别在三个组织样本的模拟数据集中对RESA进行了评估,发现RESA可以稳定的实现0.86的精确度。此外,在涵盖不同实验技术和条件下产生的15个癌症细胞系数据中,RESA的精确度也要远优于其他体细胞检测算法。这表明了RESA在适应特定细胞类型方面的灵活性,以及RESA在实验条件下的鲁棒性。

9b5779f17f9bd6fa281847cb553e6b9e.png

研究人员进一步分析了黑色素瘤的基于人源性肿瘤移植模型(Patient-derived xenograftPDX),模型对四个时间点的单细胞数据集进行RAF/MEK抑制耐药性研究。这四个时间点T0phase1phase2phase3,分别对应肿瘤治疗前,肿瘤缩小期,微小残留病(MRD)和复发期。通过RESA,研究人员成功检测到了575个体细胞突变,并对应到了524个基因上,其中包含黑色素瘤的重要驱动突变BRAF V600E。为了更好研究具有表达特征的突变,我们识别了阶段特异性的含有体细胞突变的基因,并对检测到的基因进行癌症特征基因富集,发现了包括紫外线反应,上皮到间充质转化(epithelial to mesenchymal transition, EMT)通路等。综上所述,表达的体细胞突变可能以阶段特异性和突变特异性的方式扰乱肿瘤通路和特征,揭示了表达与突变的肿瘤内异质性之间的复杂关系。

de3005cf29f8847c4d6a2be2ace1884f.png

综上,该研究建立了一个整合的生物信息算法框架,实现从单细胞转录组测序数据中直接并高精确度提取体细胞突变信息,可以用于单细胞水平体细胞突变与转录组表达变化的整合分析,并且证明了该算法在肿瘤异质性与耐药机制研究中的价值。该研究为癌症领域单细胞水平基因型与表型关联的异质性与进化研究提供方便有效的工具,为临床诊断提供新的方向。

浙江大学良渚实验室研究员沈宁为本文的通讯作者,沈宁团队博士生张天韵为本文的第一作者。研究受到了浙江大学计算机学院王海帅研究员,浙江大学爱丁堡大学联合学院郭伟教授,北京大学席瑞斌教授,良渚实验室郭红山研究员的大力支持。研究获得了浙江省领军型创新创业团队、浙江大学启动经费的支持。

招聘

浙江大学良渚实验室沈宁课题组围绕“组学与精准医学分析算法开发与应用”开展临床转化密切相关的研究,运用生物信息学数据整合分析与人工智能算法,并结合实验筛选平台进行药物研发与精准治疗。

课题组目前有多项具有重要应用价值的课题正在推进,与著名医学专家主导的实验室有合作关系,诚招具有实验生物、计算生物背景的博士后和研究助理。

详细招聘信息见:https://person.zju.edu.cn/shenning

简历投递(有意者请将个人简历等材料发送至):shenningzju@zju.edu.cn

原文链接:https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-023-01269-1

高颜值免费 SCI 在线绘图(点击图片直达)

0edc7b18e5781f6cb0d6da476c79dfaf.png

往期精品(点击图片直达文字对应教程)

2e2f26dab923e3dc2d6791dfc4ad154d.jpeg

23dc096be0244cfcecd3ecc05fda9046.jpeg

54063a27c67211ffbcce44f04d121521.jpeg

9d5d77f152d2c5e406760ae7bf79ad1a.jpeg

2cd0f47bdcf1036e05d03f25b497a0f0.jpeg

e5157819c49f6b85d242da2f263e60a8.jpeg

fc643b36b8ac9185882fa3f22c5fb141.jpeg

b0d29a1d961b4f2e4339fe2cfe046080.jpeg

0642cbc8ad64dc1c4bf5679ad2f22cd9.jpeg

b264a35e08395f453598d589054b1828.jpeg

6fa2a4dc32617dfc658a466473177c75.jpeg

f85e08cc12f5c20ff576cc1a6a3450c3.jpeg

2d3317d7acab97da450b48711a5cabdd.png

3dff1eb776da2f25458b086d0f9db43a.png

1570e85c130ab21b35fee4319a5e91ea.png

cfb73bdb21ed069f9fa4cd57b26647df.png

3026131b34a8d475e887af5191e63946.jpeg

6d8a6d6e6fa04fa5de45348b6290668d.jpeg

cb6bbf73fb3297ea616c4473c8d34836.jpeg

e81edb21975a84adae24b476445e39ed.jpeg

fb51da6fb17eee93c7e405eb24ebdb4b.png

60db705d3a2ecd778bf9c1399b60493c.png

78abeeaf7732aaea9bd9f276c1f315b8.jpeg

4edc572e615380f9b628bf6cdf22140e.png

457fd86eb969f949c0281a13937642cf.png

d72300b0d20b5d8388dbd71e25bf949a.jpeg

d5f08fd2691e976bea2a98481643d6d2.png

46fd48e9f94c043cf452147998ecc663.png

机器学习

c8286b39ee96ef69e9c3536f3739ea01.jpeg

3a63492a32e35bf627998bf0c00a87ce.jpeg

20fe1eaf605a921cc3e7f5d7d5c2138e.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值