号外 | 陈鹏课题组与王初课题组合作开发蛋白质“扩增测序”新方法

近日,北京大学化学与分子工程学院、北大-清华生命联合中心陈鹏课题组与王初课题组合作,在National Science Review杂志上发表了题为“Amplifiable protein identification via residue-resolved barcoding and composition code counting”的论文。在这项工作中,作者结合氨基酸特异的化学偶联反应、核酸定量扩增技术和计算机辅助的蛋白质指纹识别算法,开发了一种蛋白质“扩增测序”的新方法(AmproCode),为开发新一代的蛋白质测序方法提供了全新的思路。

蛋白质是生命功能的基石,单分子、单细胞水平的蛋白质测序技术能够为科学研究带来突破性的进展,并推动人类疾病诊断和治疗的进步。尽管基于质谱的蛋白质组学技术能够快速、高通量地鉴定生物样品中的蛋白质,但是与更为成熟的核酸测序技术相比,尚不能借助类似聚合酶链式反应(PCR)的技术直接扩增蛋白质分子,低丰度蛋白质的测序依然存在巨大的挑战。

近些年,为了解决这一问题,研究者们努力将各类高灵敏的分析技术应用到蛋白质测序领域,例如单分子光学技术、单分子力学技术、DNA纳米技术、纳米孔技术等等。这些单分子蛋白质测序的尝试大多依赖于高灵敏的单分子分析设备。而本工作中,作者则借助氨基酸侧链特异的偶联反应,将DNA“条码”标记到目标氨基酸的侧链上,结合qPCR定量放大DNA信号,实现蛋白质中特定氨基酸的“编码”与“扩增”。同时,作者还为之“量身定做“了蛋白质解析的计算机程序,以分析qPCR定量的氨基酸比例信号,完成对数据库中蛋白质的指认(图1)。这个全新的高灵敏蛋白质“扩增测序”技术被命名为AmproCode。

b88a58ee956ac46ffc17924085e00a3f.png

图1. AmproCode技术示意图

作者首先设计了AmproCode技术的蛋白质解析程序。作者用一个个矩阵记录蛋白质组中每条蛋白质的选定氨基酸的比例信息,并计算它们与输入信号矩阵的余弦距离,以评价蛋白质是否被成功鉴定。作者尝试利用计算机模拟评估在此算法下AmproCode技术对蛋白质组的覆盖程度。计算模拟结果表明,四到五类的氨基酸的比例信息便足以成功覆盖超过90%的人类全蛋白质组和分泌蛋白质组。这为AmproCode技术提供了坚实的理论依据。

随后,作者综合考虑反应速率、效率、特异性等因素,为AmproCode技术选择了五类氨基酸特异的偶联反应,包括半胱氨酸和马来酰亚胺的反应、赖氨酸和活化酯的反应、甲硫氨酸和氮杂环氧丙烷的反应、天冬氨酸/谷氨酸和胺基的反应、以及酪氨酸和重氮苯甲醛的反应。作者在小分子和多肽上分别测试了上述反应,并且设计了对应的DNA标记策略,完成了多肽上氨基酸侧链特异的DNA标记(图2)。其中前四类反应效率较高,作者优先选用它们进行后续的实验,而酪氨酸的反应效率和特异性偏低,作为备选。

28e3c629d7b13a19b7e4bdc028abec93.png

图2. 五类氨基酸特异的DNA“编码”标记示意图

作者在两条合成的分泌组多肽ELA和URP上展示了AmproCode技术的应用潜力。作者对多肽分别进行了半胱氨酸、赖氨酸、甲硫氨酸、天冬氨酸/谷氨酸特异的DNA标记和qPCR定量,获得了它们的比例信息,并借助蛋白质解析程序成功将ELA和URP肽从分泌组数据库中分别指认(图3)。AmproCode能够在低至飞摩尔每升的浓度(fmol/L)指认数据库中的目标多肽,比质谱和ELISA灵敏10到10000倍,展示了其超灵敏的蛋白质鉴定能力。

669dfeab5397d6c227b0ee7c29215d14.png

图3. AmproCode技术对ELA肽的超灵敏鉴定

如果借助合适的分离与富集技术,AmproCode技术也能用于混合样品中目标蛋白质的识别。作者借助SrtAβ酶从混合物中分离Aβ肽,扩增并定量了其半胱氨酸、赖氨酸、甲硫氨酸和酪氨酸的比例,并在分泌组数据库中完成了Aβ肽的鉴定,展示了AmproCode技术在生物标志物的检测和发现方面的潜在应用价值。

最后,作者再次借助计算机模拟,评估了不同实验参数对AmproCode性能的影响。模拟结果表明,氨基酸定量的误差比较容易影响蛋白质识别的成功率,但是标记定量更多的氨基酸则能够显著削弱实验误差的影响,提高 AmproCode技术的鉴定成功率(图4)。因此,在未来利用更多氨基酸特异的化学反应标记并定量更多种类的氨基酸,能够显著提升AmproCode技术的准确性、对蛋白质组覆盖率和应用普适性。

2eedee871aa54dc652073454a59c547e.png

图4. 标记更多氨基酸对AmproCode的提升

综上,本工作开发了一种蛋白质“扩增测序”新技术——AmproCode。作为一种将蛋白质转化为可扩增分子的突破性技术,它为开发下一代蛋白质测序技术提供了全新的思路,在未来可能推动单细胞蛋白质组学以及临床标志物鉴定的技术突破。作者也认为这项工作能够吸引更多化学家关注蛋白质科学,开发更多氨基酸特异的化学反应,为蛋白质测序以及蛋白质化学生物学的提供更多优秀的新工具。

北京大学化学与分子工程学院、北大-清华生命联合中心陈鹏教授和王初教授为本文的共同通讯作者。陈鹏课题组2019级博士研究生郭玮明、王初课题组副研究员刘源和陈鹏课题组博士后韩雨是本文的共同第一作者,唐欢博士,樊新元副教授等合作者也为本课题做出了贡献。该工作得到了科技部国家重点研发计划、国家自然科学基金委、北京市自然科学基金委以及腾讯探索奖的资金支持。

本文作者:GWM

原文链接:https://academic.oup.com/nsr/advance-article/doi/10.1093/nsr/nwae183/7684297

文章引用:DOI:10.1093/nsr/nwae183

高颜值免费 SCI 在线绘图(点击图片直达)

0893c2cc531522dc5369ac55b5208423.png

最全植物基因组数据库IMP (点击图片直达)

e97f1aaef7e75aa5efa40638240c3688.png

往期精品(点击图片直达文字对应教程)

5fcd74e932dc76c03191d86f5e5f5483.jpeg

d16d7c9ef3fc7e52336eb8251dc8c181.jpeg

e868bdb1caeaeffa3a4aeeea232ba54f.jpeg

b6b04ebe1cb7f5e20978f1fbeab247ad.jpeg

6897b11e92f4cd14577d56439e23491a.jpeg

0c024fe41078054349685d9e91da5970.jpeg

aa50a794dba9fa37cdce4e5d3cd2359e.jpeg

eee62fa28c78c2f092c51267810f3a59.jpeg

13e03258f39dcddbbd6e8c0a99a208fb.jpeg

c198625d13ab3fe91416ff951f0a223e.jpeg

bfd8750ff87ff4b9ff4d172035bc819e.jpeg

335e58d4b604c14bd1ed4494d149c972.jpeg

53c719e1a19159d8e7a6632ab75f77e6.png

1fdd20c5f2ee82c30aae58f4ae329a43.png

1cb30477224dd49fc1c076ff350ca167.png

4c510b27b674a342722fbd15bbe42b90.png

8a0c19698f20f724a49ee16b18154c8f.jpeg

6049019d9162dd91770c5230a154e57d.jpeg

9eac53b231c70469e4f7081ec6a75568.jpeg

1516c5f85895d9ce03ecb2428289156b.jpeg

a289fd21f441f807eac7a8bfa4f33a83.png

3697c12187fdbb827adfadef3b3badb1.png

af7ed40988e35b7c751ac8ce8d5642c6.jpeg

26db4909463d60f699ded4d02da10c4b.png

f4d906b9e13e4634ae5a229024e66048.png

47010e2c059bd78a8b5b3b717d2a01b3.jpeg

fc23752537d309e03e30b388b9b91842.png

84ba75e4e2b3bc271856fc2cebf293ba.png

机器学习

d74d078e061eb2d40e4b2426a1701e86.jpeg

6c7fa06bf632951f8a157d9bdf6630fe.jpeg

e2651b102e77c7fc92c4ed5834766d40.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值