线性分类(Linear Classification)

线性分类器通过特征的线性组合进行决策,例如在CIFAR-10数据集中的应用。权重矩阵W对应每个类别的模板,输入图像与模板通过内积比较,找到最匹配的类别。线性分类器优势在于快速的预测速度,但对复杂模式识别能力有限,如颜色和方向的变化。它可以被看作是在高维空间中将点分类的直线。
摘要由CSDN通过智能技术生成

参考:https://www.cnblogs.com/ooon/p/5869504.html

定义:在机器学习领域,分类的目标是指将具有相似特征的对象聚集。而一个线性分类器则透过特征的线性组合来做出分类决定,以达到目的。对象的特征通常被描述为特征值,而在向量中则描述为特征向量。
从图像到标签分值的参数化映射:该方法的第一部分就是定义一个评分函数,这个函数将图像的像素值映射为各个分类类别的得分,得分高低代表图像属于该类别的可能性高低。
在 CIFAR-10 中,我们有一个数量为50000的训练集,这些图像被分为10个类别。
线性分类器:

在这里插入图片描述
x为输入图像,即需要划分类别的图像。W为权重矩阵,其每一行就是针对某一类别图像的参数。可以构建多种多样的f(x),但是其中最简单就是f(x)=Wx,这就是线性分类器。
输入的图像为32
323,我们把它展开为一个30721的一维向量,我们要得到的输出是101(分为10类),由此可得知W是103072大小的矩阵。
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值