参考:https://www.cnblogs.com/ooon/p/5869504.html
定义:在机器学习领域,分类的目标是指将具有相似特征的对象聚集。而一个线性分类器则透过特征的线性组合来做出分类决定,以达到目的。对象的特征通常被描述为特征值,而在向量中则描述为特征向量。
从图像到标签分值的参数化映射:该方法的第一部分就是定义一个评分函数,这个函数将图像的像素值映射为各个分类类别的得分,得分高低代表图像属于该类别的可能性高低。
在 CIFAR-10 中,我们有一个数量为50000的训练集,这些图像被分为10个类别。
线性分类器:
x为输入图像,即需要划分类别的图像。W为权重矩阵,其每一行就是针对某一类别图像的参数。可以构建多种多样的f(x),但是其中最简单就是f(x)=Wx,这就是线性分类器。
输入的图像为32323,我们把它展开为一个30721的一维向量,我们要得到的输出是101(分为10类),由此可得知W是103072大小的矩阵。