弱监督语义分割相关论文——对CAM的生成过程进行改进

文章探讨了弱监督语义分割中对ClassActivationMapping(CAM)的改进方法,涉及数据预处理(如仿射变换、擦除等)、分类模型优化(如损失函数和全局池化)、以及标签细化等策略,利用注意力机制和自监督学习提升分割性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

在弱监督语义分割中,对CAM的生成过程进行改进的论文。
CAM生成过程为标签数据输入分类网络进行训练,因此对CAM的改进也可以进一步分为对数据、分类模型、标签的改进
1、数据:一到五都是对数据进行操作(仿射变换、擦除、拆分、混合标签),再设计损失函数进行约束
2、分类模型:六(损失函数和全局池化)
3、标签:七(聚类细化标签)

一、仿射变换图像结合正则项优化CAM生成

1、文章题目、相关资料
Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation(CVPR,2020)
2、解决问题/motivation
对应强监督分割任务来说,如果输入图像经过仿射变换,那么分割标签页应该进行相同的放射变换。将这种性质作为正则项加入到分类模型的训练过程中,从而优化CAM。。
3、方法架构
在这里插入图片描述1、提出了一对共享权重的网络来接受输入,并且设置了如下的损失函数/正则项,让原始图像的CAM经过仿射变换的结果去逼近仿射变换后的图像得到的CAM。
在这里插入图片描述2、提出了一个PCM模块,该模块通过注意力机制来融合CNN特征与CAM,得到优化后的CAM。
3、提出了如下的损失函数,将PCM模块结果与仿射变化模块进行了耦合优化在这里插入图片描述

4、总结收获
4.1、注意力机制可以融合信息
在这里插入图片描述
4.2、多个模块之间通过损失函数来进行耦合

二、拆分图像使得CAM关注更多分割区域

1、文章题目、相关资料
Complementary Patch for Weakly Supervised Semantic Segmentation(2021 ICCV)
2、解决问题/motivation
将图像拆分成两个子图像获取CAM,相比原始图像直接获取CAM,更贴近真实的分割区域。
在这里插入图片描述

3、方法架构
在这里插入图片描述
其中CPN中的PCM和PRCM模块都是通过注意力机制来融合CAM和特征,进而优化CAM。
损失有三种,分类损失

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值