系列文章目录
提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加
例如:第一章 Python 机器学习入门之pandas的使用
提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档
注意力机制汇总
注意力机制是深度学习中的重要模块,现对注意力机制的使用场景和使用方法做一个简单的汇总,而不对原理对探究
一、注意力机制的功能
自己当前接触到的功能有两个
1、当仅在某一层的特征输出,也即一组向量之间进行注意力的计算时,这时注意力机制可以提高模型的感知野
2、如果对于两种不同层输出的特征进行注意力的计算,那么注意力机制还有特征融合的功能。
二、使用步骤
注意力机制的具体计算涉及到三组向量,分别是query、key、value,这三组向量可以是同一组也可以不是,如果为同一组向量则称为自注意力机制,如transformer中的自注意力机制
一些说明:
1、q、k、v都是可以先通过一个全连接层再进行计算,这样就可学习了
2、还需要归一化,上述中没有给出
3、query、key一般相同,不同通过全连接层调整维度
4、评分函数的形式有很多,如内积、相似度等等,目的是衡量两个向量之间的相似度
# 总结
`提示:这里对文章进行总结:`
待补充