poj 2385 Apple Catching DP

本人是初出茅庐的小菜,代码繁琐,算法低端,写给自己看的,希望大神们多多指教
题目大意:
有一个人在两棵掉苹果的树下来回接苹果,每分钟都有个树往下掉,编号为1、2的两棵树,一共掉T分钟,然后这个人只能动W次,一开始站在1树,问最后最多能接多少个苹果。
思路:
令dp[x][y][z],为已经过去了x分钟,已经走了y步,目前在z(1 or 2)树下,并且苹果已经落下来了,因为初始在1树,所以令dp[0][0][1]=0,其他的都设为-1。
other idea:
可以把z省略,节省一维的空间,可以用y%2+1来表示所在的位置,这里懒得改了

#include <iostream>
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <string>
#include <string.h>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <stack>
using namespace std;
typedef long long LL;
const int INF=0x7fffffff;
const int MAX_N=1009;

int T,W;
int A[MAX_N];
int dp[1009][35][3];

int change(int x){
    if(x==1)x=2;
    else x=1;
    return x;
}


int main(){
    cin>>T>>W;
    for(int i=1;i<=T;i++){
        scanf("%d",&A[i]);
    }

    memset(dp,-1,sizeof(dp));

    dp[0][0][1]=0;
    for(int i=1;i<=T;i++){
        for(int j=0;j<=W;j++){
            for(int k=1;k<=2;k++){
                if(A[i]==k){//如果所在的树有苹果掉下,就把之前的两种状态(在这个树没动地方 or 从另一个树跑过来)取个最大值,然后再+1
                    if(j==0){//这一步是因为整个for的j是从0开始的,下面dp有j-1,所以我怕出现j-1=-1的情况,就加了两句,暂时不知道怎么处理好
                        dp[i][j][k]=dp[i-1][j][k]+1;
                    }
                    else dp[i][j][k]=1+max(dp[i-1][j][k],dp[i-1][j-1][change(k)]);
                }
                else{//如果所在的树没苹果,直接取前两种状态最大值,不用+1
                    if(j==0){//原理跟上面相同
                        dp[i][j][k]=dp[i-1][j][k];
                    }
                    else dp[i][j][k]=max(dp[i-1][j][k],dp[i-1][j-1][change(k)]);
                }
            }
        }
    }
                
    int M=0;
    for(int i=0;i<=T;i++){//最后在整个dp里找到最大值
        for(int j=0;j<=W+1;j++){
            for(int k=1;k<=2;k++){
                M=max(M,dp[i][j][k]);
            }
        }
    }
    cout<<M<<endl;
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值