198. 打家劫舍
1.代码
class Solution {
public:
int rob(vector<int>& nums) {
vector<int>f(nums.size(), 0);
if (nums.size() >= 1) f[0] = nums[0];
if (nums.size() >= 2) f[1] = max(nums[0], nums[1]);
if (nums.size() == 1) return f[0];
if (nums.size() == 2) return f[1];
for (int i = 2; i < nums.size(); i++) {
f[i] = max(f[i - 2] + nums[i], f[i - 1]);
}
return f[nums.size() - 1];
}
};
2.动规五部曲
1.确定dp数组和其下标的含义
一夜之内能够偷窃到的最高金额可知,dp[i]为盗窃到第i个房屋的最高金额,dp[nums.size() - 1]为盗窃完所有房屋的最高金额
2.确定dp数组的递推公式,一般有事从后面看,再从中间全局看,因为这不像完全背包,需要多个物品,所以再后面几个看,我们可以确定到达第i个房屋时的金额,有两种情况:
一.偷当前房屋的物品:则金额就是为dp[i - 2]所偷的金额加上现在房屋要偷的金额
二.不偷当前房屋:则金额就是dp[i - 1]的金额
所以最大金额为:dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
3.初始化dp数组
由递推公式可知,前面两个元素必须知道,可以初始化dp[0]和dp[1]
4.确定遍历顺序
这里按照直线遍历房屋直到最后一个房屋,所以顺序遍历
5.举例说明dp数组
213. 打家劫舍 II
1.代码
class Solution {
public:
int rob(vector<int>& nums) {
if (nums.size() == 1) return nums[0];
if (nums.size() == 2) return max(nums[0], nums[1]);
vector<int> a1(nums.begin(), nums.end() - 1);
vector<int> a2(nums.begin() + 1, nums.end());
int dpstart = robRangeMax(a1);
int dpend = robRangeMax(a2);
int result = max(dpstart, dpend);
return result;
}
int robRangeMax(vector<int>& nums) {
vector<int>f(nums.size(), 0);
if (nums.size() == 1) return nums[0];
if (nums.size() == 2) return max(nums[0], nums[1]);
f[0] = nums[0];
f[1] = max(nums[0], nums[1]);
for (int i = 2; i < nums.size(); i++) {
f[i] = max(f[i - 2] + nums[i], f[i - 1]);
}
return f[nums.size() - 1];
}
};
// 注意注释中的情况二情况三,以及把198.打家劫舍的代码抽离出来了
class Solution {
public:
int rob(vector<int>& nums) {
if (nums.size() == 0) return 0;
if (nums.size() == 1) return nums[0];
int result1 = robRange(nums, 0, nums.size() - 2); // 情况二
int result2 = robRange(nums, 1, nums.size() - 1); // 情况三
return max(result1, result2);
}
// 198.打家劫舍的逻辑
int robRange(vector<int>& nums, int start, int end) {
if (end == start) return nums[start];
vector<int> dp(nums.size());
dp[start] = nums[start];
dp[start + 1] = max(nums[start], nums[start + 1]);
for (int i = start + 2; i <= end; i++) {
dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
}
return dp[end];
}
};
2.思考
和第一题不同的是首尾不能够相连,所以我们能分成两种情况,一种是不包括首元素再进行第一题的求最后一个dp数组,另一种是不包括尾元素求最后一个dp数组,最后这两种方法的结果求最大值就是最终结果了。
3.递归五部曲
和第一题一样。就是分成了两个数组分别求dp
337. 打家劫舍 III
1.代码
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int rob(TreeNode* root) {
vector<int>result = robTree(root);
return max(result[0], result[1]);
}
vector<int> robTree(TreeNode* cur) {
if (cur == NULL) return vector<int>{0, 0};
vector<int> left = robTree(cur->left);
vector<int> right = robTree(cur->right);
//偷当前结点
int var1 = cur->val + left[0] + right[0];
//不偷当前结点,左右结点可偷可不偷
int var2 = max(left[0], left[1]) + max(right[0], right[1]);
return vector<int>{var2, var1};
}
};
2.思考
这题的房屋是二叉树排列的,也是一样不能相邻的两个房屋偷
每个结点都能偷和不能偷,可以直接算出这两种情况,再不断向上(根)推理,就能够得出,偷根结点和不偷根结点两种情况的值了,再求出最大值
3.递归三部曲
1.确定参数和返回值
参数为当前结点,返回值为一个两个元素的数组,第一个元素代表偷,第二个元素代表不偷
2.确定终止条件
每次递归遍历左右结点,当遇到叶子结点下一个结点时,返回{0, 0},代表到末尾了
3.确定遍历顺序,
这里为后序遍历,不断把结果返回上一层时,可以对这一层进行判定选与不选,会用到已经得到的下一层的数组元素,不断返回直到到达根结点就能知道它选与不选了。