自然语言处理
文章平均质量分 95
人鱼线
1、越努力,越幸运! 2、机会总是留给有准备的人! 3、承受别人不能承受的,才能得到别人不能得到的!
展开
-
知识图谱2-最通俗易懂的BiLSTM-CRF模型中的CRF层介绍
Ref:https://zhuanlan.zhihu.com/p/44042528 本文将原作者的内容摘抄过来,并做一些注释本文翻译自GitHub博客上的原创文章,结尾有原文链接。文章没有晦涩的数学公式,而是通过实例一步一步讲解CRF的实现过程,是入门CRF非常非常合适的资料。概述该文章系列包括以下内容:概念介绍 — 基于 BiLSTM-CRF模型中的命名实体识别任务中的CRF...转载 2019-12-17 22:11:08 · 3388 阅读 · 1 评论 -
知识图谱1-序列标注:BiLSTM-CRF模型做基于字的中文命名实体识别
Ref:https://www.cnblogs.com/Determined22/p/7238342.html命名实体识别(Named Entity Recognition)命名实体识别(Named Entity Recognition, NER)是 NLP 里的一项很基础的任务,就是指从文本中识别出命名性指称项,为关系抽取等任务做铺垫。狭义上,是识别出人名、地名和组织机构名这三类命名...转载 2019-12-18 15:38:25 · 4107 阅读 · 1 评论 -
知识图谱3-LSTM+CRF for NER
Ref:http://xtf615.com/2018/11/27/ner/ 摘抄到自己的博客上方便修改,添加备注。 比较深澳,后面的就看不懂了,之后再整理吧。LSTM+CRF NER本文将借鉴论文《End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF》中的思路和方法实现命名实体识别。目标NER英文命名实体识别的...转载 2019-12-18 17:40:33 · 1245 阅读 · 1 评论 -
LSTM 网络 (Understanding LSTM Networks by colah)
原文链接:Understanding LSTM Networks1. 循环神经网络(RNNs)人们思考问题往往不是从零开始的。就好像你现在阅读这篇文章一样,你对每个词的理解都会依赖于你前面看到的一些词,而不是把你前面看的内容全部抛弃了,忘记了,再去理解这个单词。也就是说,人们的思维总是会有延续性的。传统的神经网络是做不到这样的延续性(它们没办法保留对前文的理解),这似乎成了它们一个巨...转载 2019-12-28 10:28:22 · 1885 阅读 · 1 评论 -
NLP系列(7)_Transformer详解
Refhttps://jalammar.github.io/illustrated-transformer/,https://blog.csdn.net/han_xiaoyang/article/details/86560459编者按:前一段时间谷歌推出的BERT模型在11项NLP任务中夺得SOTA结果,引爆了整个NLP界。而BERT取得成功的一个关键因素是Transformer的...转载 2019-12-27 14:41:56 · 863 阅读 · 0 评论 -
Bert
Ref:(1).NLP的游戏规则从此改写?从word2vec, ELMo到BERT(2).从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史1. 前言还记得不久之前的机器阅读理解领域,微软和阿里在SQuAD上分别以R-Net+和SLQA超过人类,百度在MS MARCO上凭借V-Net霸榜并在BLEU上超过人类。这些网络可以说一个比一个复杂,似乎“如何设计...转载 2019-12-27 14:26:33 · 577 阅读 · 0 评论 -
word2vec
本文介绍wordvec的概念 语言模型训练的两种模型 CBOW + skip gram word2vec 优化的四种方法:层次softmax、高频词组当做单个词来处理、对高频单词采样、负例采样 gensim word2vec默认用的模型和方法机器学习的输入都是数字,而NLP都是文字; 为了让机器学习应用在NLP上,需要把文字转换为数字,把文字嵌入到数学空间。1. wordve...原创 2019-12-23 18:43:45 · 6773 阅读 · 0 评论