矩阵分解
文章平均质量分 97
人鱼线
1、越努力,越幸运! 2、机会总是留给有准备的人! 3、承受别人不能承受的,才能得到别人不能得到的!
展开
-
LFM MF SVD SVD++ FM 之间的关系
Ref:https://zhuanlan.zhihu.com/p/98058812 在原文的基础上进行补充基于行为的推荐系统算法我们称之为协同过滤,包括基于邻域、基于模型(隐语义模型LFM)和基于图的随机游走。这次我们详细说说LFM模型。我们的目标是对一个user-item的评分矩阵进行一个补充,得到未知的分数,进而进行推荐。user和item是没有直接关系的,无法直接得到二者的...原创 2020-03-04 15:52:32 · 2489 阅读 · 0 评论 -
矩阵分解之:主成分分析(PCA)
本文是在参考主成分分析(PCA)原理详解的基础上 添加一些自己的理解。1.相关背景在许多领域的研究与应用中,通常需要对含有多个变量的数据进行观测,收集大量数据后进行分析寻找规律。多变量大数据集无疑会为研究和应用提供丰富的信息,但是也在一定程度上增加了数据采集的工作量。更重要的是在很多情形下,许多变量之间可能存在相关性,从而增加了问题分析的复杂性。如果分别对每个指标进行分析,分析往往是孤立...转载 2020-01-16 20:58:21 · 18731 阅读 · 0 评论 -
矩阵分解之: 特征值分解(EVD)、奇异值分解(SVD)、SVD++
目录:1.矩阵分解 1.1 矩阵分解的产生原因 1.2矩阵分解作用 1.3矩阵分解的方法 1.4推荐学习的经典矩阵分解算法2. 特征值分解(EVD)3. 奇异值分解(SVD)4.SVD++5.SVD/SVD++在协同过滤中的应用1. 矩阵分解1.1 矩阵分解的产生原因在介绍矩阵分解之前,先让我们明确下推荐系...原创 2020-01-15 22:17:38 · 30066 阅读 · 4 评论