卡特兰数

卡特兰数又称卡塔兰数,英文名Catalan number,是组合数学中一个常出现在各种计数问题中出现的数列。以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)的名字来命名,其前几项为(从第零项开始) : 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, …

卡特兰数h(n)满足以下递推关系 [1] :
h(n)=h(0)h(n-1)+h(1)h(n-2)+h(3)h(n-4)+…+h(n-2)h(1)+h(n-1)h(0)

递推其他解法:
h(n)=C(2n,n)/(n+1)
h(n)=C(2n,n)-C(2n,n-1)

例题:
HNOI2009有趣的数列

思路:阶乘的质因数分解(不会的话写一下这题 阶乘分解

#define first f
#define second s
#define ll long long
#define mp make_pair
#define pb push_back
#define pf push_front
#define lb lower_bound
#define ub upper_bound
#include <bits/stdc++.h>
#define pii pair<int,int>
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
const int maxn=2e6+5;
const double PI=acos(-1);
const double e=2.718281828459;

int prime[maxn],num_prime=0;
bool is_notprime[maxn];
int  cnt3[maxn],cnt1[maxn],cnt2[maxn];

void Prime(int n)
{
    is_notprime[0]=is_notprime[1]=1;
    for(int i=2;i<=2*n;i++){
        if(!is_notprime[i]){
            prime[num_prime++]=i;
        }
        for(int j=0;j<num_prime&&i*prime[j]<=2*n;j++){
            is_notprime[i*prime[j]]=1;
            while(i%prime[j]==0){break;}
        }
    }
}
ll qpow(int x,int p,int MOD)
{
    ll ans=1,a=1ll*x;
    while(p){
        if(p&1){
            ans=ans*a%MOD;
        }
        a=a*a%MOD;
        p>>=1;
    }
    return ans;
}
int main()
{
    int n,p;
    scanf("%d%d",&n,&p);
    Prime(n);
    for(int i=0;i<num_prime;i++){
        int cnt=0,ss=n+1;
        while(ss){cnt+=(ss/prime[i]);ss/=prime[i];}
        cnt1[prime[i]]=cnt;
        ss=2*n;cnt=0;
        while(ss){cnt+=(ss/prime[i]);ss/=prime[i];}
        cnt2[prime[i]]=cnt;
        ss=n;cnt=0;
        while(ss){cnt+=(ss/prime[i]);ss/=prime[i];}
        cnt3[prime[i]]=cnt;
    }
    ll ans=1;
    for(int i=0;i<num_prime;i++){
        ans=ans*qpow(prime[i],cnt2[prime[i]]-cnt1[prime[i]]-cnt3[prime[i]],p)%p;
    }
    printf("%lld\n",ans);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值