卡特兰数又称卡塔兰数,英文名Catalan number,是组合数学中一个常出现在各种计数问题中出现的数列。以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)的名字来命名,其前几项为(从第零项开始) : 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, …
卡特兰数h(n)满足以下递推关系 [1] :
h(n)=h(0)h(n-1)+h(1)h(n-2)+h(3)h(n-4)+…+h(n-2)h(1)+h(n-1)h(0)
递推其他解法:
h(n)=C(2n,n)/(n+1)
h(n)=C(2n,n)-C(2n,n-1)
例题:
HNOI2009有趣的数列
思路:阶乘的质因数分解(不会的话写一下这题 阶乘分解)
#define first f
#define second s
#define ll long long
#define mp make_pair
#define pb push_back
#define pf push_front
#define lb lower_bound
#define ub upper_bound
#include <bits/stdc++.h>
#define pii pair<int,int>
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
const int maxn=2e6+5;
const double PI=acos(-1);
const double e=2.718281828459;
int prime[maxn],num_prime=0;
bool is_notprime[maxn];
int cnt3[maxn],cnt1[maxn],cnt2[maxn];
void Prime(int n)
{
is_notprime[0]=is_notprime[1]=1;
for(int i=2;i<=2*n;i++){
if(!is_notprime[i]){
prime[num_prime++]=i;
}
for(int j=0;j<num_prime&&i*prime[j]<=2*n;j++){
is_notprime[i*prime[j]]=1;
while(i%prime[j]==0){break;}
}
}
}
ll qpow(int x,int p,int MOD)
{
ll ans=1,a=1ll*x;
while(p){
if(p&1){
ans=ans*a%MOD;
}
a=a*a%MOD;
p>>=1;
}
return ans;
}
int main()
{
int n,p;
scanf("%d%d",&n,&p);
Prime(n);
for(int i=0;i<num_prime;i++){
int cnt=0,ss=n+1;
while(ss){cnt+=(ss/prime[i]);ss/=prime[i];}
cnt1[prime[i]]=cnt;
ss=2*n;cnt=0;
while(ss){cnt+=(ss/prime[i]);ss/=prime[i];}
cnt2[prime[i]]=cnt;
ss=n;cnt=0;
while(ss){cnt+=(ss/prime[i]);ss/=prime[i];}
cnt3[prime[i]]=cnt;
}
ll ans=1;
for(int i=0;i<num_prime;i++){
ans=ans*qpow(prime[i],cnt2[prime[i]]-cnt1[prime[i]]-cnt3[prime[i]],p)%p;
}
printf("%lld\n",ans);
return 0;
}